Statistics and Probability Prelim Exam

9am-1pm, Wednesday, August 16, 2017

Note: To pass this exam, you need to pass both Statistics and Probability parts

Statistics Part

1. Suppose that X_{1}, \ldots, X_{n} are iid from $\operatorname{Beta}(\mu, 1)$ distribution, where $\mu>0$.

Suppose we want to test $H_{0}: \mu \leq 1$ vs. $H_{1}: \mu>1$.
(a) Find the likelihood ratio test statistic.
(b) Is there a uniformly most powerful (UMP) test of size $\alpha=0.05$? If no, give reasons for your answer. If yes, find the level $\alpha=0.05$ UMP test specifying the critical region in a usable form.
2. Let X_{1}, \ldots, X_{n} be i.i.d. from a population distribution with pdf

$$
f(x \mid \theta)=e^{-(x-\theta)} \quad x>\theta, \quad \theta>0
$$

Suppose we assign a prior distribution for θ,

$$
\pi(\theta)=\frac{1}{2} e^{-\frac{\theta}{2}} I(\theta>0)
$$

a) Find the posterior distribution of θ, and the Bayes rule with respect to the quadratic $\operatorname{loss} L(\theta, a)=(\theta-a)^{2}$.
b) Give the shortest 95% Bayesian interval estimate for θ.
3. Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu_{1}, \sigma^{2}\right)$, and let Y_{1}, \ldots, Y_{n} be a random sample from $N\left(\mu_{2}, \sigma^{2}\right)$, independent of the previous sample. Assume μ_{1} and μ_{2} are unknown, and σ is known.

Find the UMVUE of $\eta=P(X<Y)$ where X and Y are independent with distributions $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$, respectively, which are the same as the ones given above.
4. A distribution often used to model income in the Pareto distribution with density,

$$
f(x \mid \theta)=c^{1 / \theta} \theta^{-1} x^{-(1+1 / \theta)},, x>c
$$

where $\theta>0$ and c is a known positive constant. Let X_{1}, \ldots, X_{n} be a random sample from f.
(a) If $\theta>1$, find a method of moments estimate of θ using the first moment.
(b) Compute its (asymptotic) efficiency with respect to the Cramer-Rao Lower Bound bound.

Probability Part

5. Let $\alpha>0$ be a parameter to choose. Consider independent Binomial random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$, each with parameter $\left(2, n^{-\alpha}\right)$ respectively. That is,

$$
\mathbb{P}\left(X_{n}=k\right)=\binom{2}{k} n^{-\alpha k}\left(1-n^{-\alpha}\right)^{2-k}, k=0,1,2, n \in \mathbb{N} .
$$

So, X_{1}, X_{2}, \ldots form a random sequence of numbers $0,1,2$. We are interested in the pattern ' 012 ', the consecutive appearance of $0,1,2$: we say that such a pattern occurs at time t, if $X_{t-2}=0, X_{t-1}=1, X_{t}=2$. Show that if $\alpha \in(1 / 3, \infty)$, with probability one there are only finitely many appearances of pattern ' 012 ' in the random sequence.
6. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a collection of independent random variables with

$$
\mathbb{P}\left(X_{n}= \pm n^{2}\right)=\frac{1}{2 n^{\beta}} \text { and } \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n^{\beta}}, n \in \mathbb{N},
$$

where $\beta \in(0,1)$ is fixed for all $n \in \mathbb{N}$. Consider $S_{n}:=X_{1}+\cdots+X_{n}$. Show that

$$
\frac{S_{n}}{n^{\gamma}} \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

for some $\sigma>0, \gamma>0$. Identify σ and γ as functions of β. You may use the formula

$$
\sum_{k=1}^{n} k^{\theta} \sim \frac{n^{\theta+1}}{\theta+1}
$$

for $\theta>0$, and recall that by $a_{n} \sim b_{n}$ we mean $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$.
7. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. random variables with cumulative distribution function $\mathbb{P}\left(X_{1} \leq\right.$ $x)=\left(\frac{x}{1+x}\right)^{1 / 2}, x \in[0, \infty)$. Show that

$$
n^{2}\left(\min _{i=1, \ldots, n} X_{i}\right)
$$

converges weakly as $n \rightarrow \infty$. Identify the limiting distribution.
8. Prove that for any non-negative random variable X,

$$
\mathbb{E}(\sin X)=\int_{0}^{\infty} \cos t \cdot \mathbb{P}(X>t) d t
$$

