Statistics and Probability Prelim Exam
 Wednesday, May 2nd, 2018, 12 pm-4 pm

Note: To pass this exam, you need to pass both Statistics and Probability parts.

Statistics Part

1. Let X_{1}, \ldots, X_{n} be a random sample from a population with $\operatorname{pdf} N\left(0, \sigma^{2}\right)$, with $\sigma^{2}>0$ is unknown. Let $\theta=P(X>c)$ where X has the same $N\left(0, \sigma^{2}\right)$ distribution, and $c>0$ is a known constant. Find the uniformly minimum variance unbiased estimator of θ.
2. Lett X_{1}, \ldots, X_{n} be a random sample from a population with $\operatorname{Beta}(\theta, 1)$ distribution, and let Y_{1}, \ldots, Y_{m} be a random sample from a population with $\operatorname{Beta}(\mu, 1)$ distribution, independent of the previous sample.
Find the likelihood ratio test of size α for $H_{0}: \theta=\mu$ vs. $H_{1}: \theta \neq \mu$, giving the exact critical region in terms of the quantiles of a known distribution.
3. A Bayes estimator (or a Bayes rule) of a parameter θ based on a sample of size n is a decision rule $\delta\left(x_{1}, . ., x_{n}\right)$ that minimizes the posterior expected loss.
Let $\pi(\theta \mid x)$ be the posterior distribution.
(a) For the loss function

$$
L(\theta, \delta)=\left(1-\frac{\delta}{\theta}\right)^{2}
$$

find the general form of the Bayes estimator in terms of integral expressions involving the posterior distribution.
(b) Suppose $X_{i} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu, \sigma^{2}\right), i=1, \ldots, n$. The mean μ is assumed to be known and let the prior distribution of σ^{2} be the inverse gamma distribution,

$$
f\left(\sigma^{2} \mid \alpha, \beta\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\sigma^{2}\right)^{-\alpha-1} e^{-\frac{\beta}{\sigma^{2}}}
$$

with $\alpha>1, \beta>0$ and mean $\beta /(\alpha-1)$.
(i) Give the exact expression of the pdf of the posterior distribution including its normalizing constant, and find the mean of the posterior distribution.
(ii) Find the Bayes estimator of σ^{2} under the loss function $L\left(\sigma^{2}, \delta\right)=$ $\left(1-\frac{\delta}{\sigma^{2}}\right)^{2}$.
4. Let X_{1}, \ldots, X_{n} be a sample from a population with the pdf

$$
f(x ; \theta)=\theta(\theta+1) x^{\theta-1}(1-x)
$$

where $0<x<1, \theta>0$.
(a) Show that $T_{n}=\frac{2 \bar{X}}{1-\bar{X}}$ is a method of moments estimator of θ.
(b) Show that

$$
\frac{\sqrt{n}\left(T_{n}-\mu_{n}(\theta)\right)}{\sigma_{n}(\theta)} \rightarrow N(0,1)
$$

in distribution where $\mu_{n}(\theta)=\theta, \sigma_{n}^{2}(\theta)=\theta(\theta+2)^{2} / 2(\theta+3)$.
(c) Show taht T_{n} is not efficient by calculating the information bound.

Probability Part

5. Consider a collection of non-negative random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ on a common probability space. Suppose that

$$
\mathbb{E}\left(X_{n}\right)=\frac{\sqrt{n}}{n+1}, \text { for all } n \in \mathbb{N} .
$$

(a) Show that $X_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$.
(b) Find an explicit increasing sequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ such that $X_{n_{k}} \rightarrow 0$ with probability one as $k \rightarrow \infty$.
6. Use the strong law of large numbers to prove that if U_{1}, U_{2}, \ldots are i.i.d. uniform random variables on $(0,1)$, then the sequence of geometric means converges with probability one as $n \rightarrow \infty$. That is,

$$
\lim _{n \rightarrow \infty}\left(U_{1} U_{2} \cdots U_{n}\right)^{1 / n}=c \text { a.s. }
$$

Identify the limit c.
7. Suppose that X_{1}, X_{2}, \ldots are independent random variables with distribution

$$
\mathbb{P}\left(X_{k}= \pm 1\right)=\frac{1}{2 k} \quad \text { and } \quad \mathbb{P}\left(X_{k}=0\right)=\frac{1-k}{k}, \quad k \in \mathbb{N} .
$$

Prove that

$$
\frac{\sum_{k=1}^{n} X_{k}}{\sqrt{\ln n}} \Rightarrow \mathcal{N}(0,1)
$$

as $n \rightarrow \infty$, where $\mathcal{N}(0,1)$ is the standard normal distribution.
Hints: You may use the following estimates

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{k}=\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{k} d x \geq \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} d x=\ln (n+1) \\
& \sum_{k=1}^{n} \frac{1}{k}=1+\sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k} d x \leq 1+\sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} d x=1+\ln n
\end{aligned}
$$

8. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. non-negative random variables with

$$
\mathbb{P}\left(X_{1}>x\right)=\frac{1}{(1+x)^{2}}, \quad x \geq 0
$$

Prove that with an appropriately chosen parameter $\beta>0$, we have that

$$
\frac{1}{n^{\beta}} \max _{i=1, \ldots, n} X_{i}
$$

converges in distribution to a non-degenerate distribution. Identify in this case the value of β and the limit distribution (in term of the cumulative distribution function).

