Statistics & Probability preliminary examination

August 20, 2014

Instructions

To pass this exam you need to pass both parts: probability and statistics.

Part I Statistics

#1. Let X_j , j = 1, 2, ..., n be independently distributed as $N(\alpha + j\beta, 1)$ where α and β are unknown. Find the **UMVU** estimator of β . Justify your answer.

#2. Let $X_1, ..., X_n$ be iid random variables with common density function $f(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2}$.

- (2a) Show that the mle of λ , $\hat{\lambda}_n$, exists,
- (2b) Show that $\sqrt{n}(\widehat{\lambda}_n \lambda) \xrightarrow{D} N(0, 2\lambda^2)$ as $n \to \infty$.

Hint : It is known that , for $a > -\frac{1}{2}$ and $b > a + \frac{1}{2}$,

$$\int_0^\infty \frac{(x^2)^a}{(1+x^2)^b} dx = \frac{1}{2}B(a+\frac{1}{2},b-a-\frac{1}{2}) = \frac{\Gamma(a+\frac{1}{2})\Gamma(b-a-\frac{1}{2})}{2\Gamma(b)}$$

- #3. Let $X_1, ..., X_n$ be a random sample from $\text{Gamma}(\alpha, \beta)$ population, i.e. the common density function is $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$ for x > 0. Show that there exist a UMP test for testing $H_0: \beta \leq \beta_0 \text{ vs } H_1: \beta > \beta_0, \alpha \text{ is known.}$ Write down the critical value for the level 5% UMP test.
- #4. Suppose $X_1, ..., X_n$ are iid Poisson (μ) and $Y_1, ..., Y_n$ are iid Poisson (λ) . Assume that $X_1, ..., X_n$ are independent of $Y_1, ..., Y_n$. Suppose the prior density for (μ, λ) is $\pi(\mu, \lambda) = e^{-(\mu+\lambda)}$, for $\mu, \lambda > 0$. Suppose that we observe data for which $\sum_{j=1}^n X_j = 10$ and $\sum_{j=1}^n Y_j = 20$.

[4a] Find the joint posterior distribution of (μ, λ) and marginal posterior distribution of

$$\theta = \frac{\mu}{\mu + \lambda}$$

[4b] Give the Bayes estimator of θ under the square error loss.

You may use known results as long as you state them clearly.

Part II Probability

#5. Let X_1, X_2, \ldots be independent and identically distributed random variables with

$$P(X_i = 1) = P(X_i = -1) = 1/2.$$

Prove that

$$\frac{\sqrt{3}}{\sqrt{n^3}} \sum_{k=1}^n k X_k \Rightarrow N(0,1)$$

(You may use formulas $\sum_{j=1}^{n} j^2 = \frac{1}{6}n(n+1)(2n+1)$ and $\sum_{j=1}^{n} j^3 = \frac{1}{4}n^2(n+1)^2$ without proof.)

#6. Let (X, Y) be a pair of strictly positive random variables with cumulative distribution function F(x, y). Show that

$$E\left(\frac{1}{XY}\right) = \iint_{\mathbb{R}^2} \frac{F(x,y)}{x^2 y^2} dx dy$$

#7. Let A_1, A_2, \ldots be a sequence of independent events. Let \mathcal{F}_n be the sigma algebra generated by A_n, A_{n+1}, \ldots Define

$$\mathcal{T} = \bigcap_{n \ge 1} \mathcal{F}_n.$$

Let $B \in \mathcal{T}$. Show that B has probability 0 or 1.

#8. Suppose that $X_1, X_2, \ldots, Y_1, Y_2, \ldots$ are independent random variables such that

$$P(X_k = k) = P(X_k = -k) = \frac{1}{2k^{\alpha}}, \ P(X_k = 0) = 1 - \frac{1}{k^{\alpha}},$$
$$P(Y_k > x) = e^{-kx} \text{ for } x > 0.$$

Show that if $\alpha > 1$ then the series $\sum_{k=1}^{\infty} X_k Y_k$ converges with probability one.