Statistics \& Probability preliminary examination

August 20, 2014

Instructions

To pass this exam you need to pass both parts: probability and statistics.

Part I Statistics

\#1. Let $X_{j}, \mathrm{j}=1,2, \ldots, \mathrm{n}$ be independently distributed as $N(\alpha+j \beta, 1)$ where α and β are unknown. Find the UMVU estimator of β. Justify your answer.
\#2. Let X_{1}, \ldots, X_{n} be iid random variables with common density function $f(x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}}$.
(2a) Show that the mle of $\lambda, \widehat{\lambda}_{n}$, exists,
(2b) Show that $\sqrt{n}\left(\widehat{\lambda}_{n}-\lambda\right) \xrightarrow{D} N\left(0,2 \lambda^{2}\right)$ as $\mathrm{n} \rightarrow \infty$.
Hint : It is known that, for $a>-\frac{1}{2}$ and $b>a+\frac{1}{2}$,

$$
\int_{0}^{\infty} \frac{\left(x^{2}\right)^{a}}{\left(1+x^{2}\right)^{b}} d x=\frac{1}{2} B\left(a+\frac{1}{2}, b-a-\frac{1}{2}\right)=\frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma\left(b-a-\frac{1}{2}\right)}{2 \Gamma(b)} .
$$

\#3. Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Gamma}(\alpha, \beta)$ population, i.e. the common density function is $f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}$ for $x>0$.
Show that there exist a UMP test for testing
$H_{0}: \beta \leq \beta_{0}$ vs $H_{1}: \beta>\beta_{0}, \alpha$ is known.
Write down the critical value for the level 5% UMP test .
\#4. Suppose X_{1}, \ldots, X_{n} are iid Poisson (μ) and Y_{1}, \ldots, Y_{n} are iid Poisson (λ). Assume that X_{1}, \ldots, X_{n} are independent of Y_{1}, \ldots, Y_{n}. Suppose the prior density for (μ, λ) is $\pi(\mu, \lambda)=e^{-(\mu+\lambda)}$, for $\mu, \lambda>0$.
Suppose that we observe data for which $\sum_{j=1}^{n} X_{j}=10$ and $\sum_{j=1}^{n} Y_{j}=20$.
[4a] Find the joint posterior distribution of (μ, λ) and marginal posterior distribution of

$$
\theta=\frac{\mu}{\mu+\lambda} .
$$

[4b] Give the Bayes estimator of θ under the square error loss.
You may use known results as long as you state them clearly.

Part II Probability

$\# 5$. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with

$$
P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2
$$

Prove that

$$
\frac{\sqrt{3}}{\sqrt{n^{3}}} \sum_{k=1}^{n} k X_{k} \Rightarrow N(0,1)
$$

(You may use formulas $\sum_{j=1}^{n} j^{2}=\frac{1}{6} n(n+1)(2 n+1)$ and $\sum_{j=1}^{n} j^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ without proof.)
\#6. Let (X, Y) be a pair of strictly positive random variables with cumulative distribution function $F(x, y)$. Show that

$$
E\left(\frac{1}{X Y}\right)=\iint_{\mathbb{R}^{2}} \frac{F(x, y)}{x^{2} y^{2}} d x d y
$$

\#7. Let A_{1}, A_{2}, \ldots be a sequence of independent events. Let \mathcal{F}_{n} be the sigma algebra generated by A_{n}, A_{n+1}, \ldots Define

$$
\mathcal{T}=\bigcap_{n \geq 1} \mathcal{F}_{n}
$$

Let $B \in \mathcal{T}$. Show that B has probability 0 or 1 .
\#8. Suppose that $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots$ are independent random variables such that

$$
\begin{gathered}
P\left(X_{k}=k\right)=P\left(X_{k}=-k\right)=\frac{1}{2 k^{\alpha}}, P\left(X_{k}=0\right)=1-\frac{1}{k^{\alpha}}, \\
P\left(Y_{k}>x\right)=e^{-k x} \text { for } x>0 .
\end{gathered}
$$

Show that if $\alpha>1$ then the series $\sum_{k=1}^{\infty} X_{k} Y_{k}$ converges with probability one.

