Statistics and Probability Preliminary Examination

August 2015
Note: To pass this exam, you need to pass both Statistics and Probability parts.

PART I - STATISTICS

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the inverse Gaussian distribution $I(\mu, \tau)$ with probability density

$$
\sqrt{\frac{\tau}{2 \pi x^{3}} \exp \left(-\frac{\tau}{2 x \mu^{2}}(x-\mu)^{2}\right)}, x>0, \tau, \mu>0
$$

(a) Show that $V=\frac{\tau}{\mu^{2} X}(X-\mu)^{2}$ has χ_{1}^{2} distribution.
(b) Find the uniformly most powerful test with significance level $\alpha=$ 0.05 for $H_{0}: \mu \leq \mu_{0}$ against $H_{1}: \mu>\mu_{0}$ when τ is known and μ_{0} is given.
2. Let X_{1}, \ldots, X_{n} be iid having the common pdf

$$
\frac{1}{\sigma} \exp \left\{-\frac{(x-\mu)}{\sigma}\right\} I(x>\mu)
$$

where μ is unknown but σ is known with $-\infty<\mu<\infty$, and $0<\sigma<$ ∞.
(a) Show that $U=X_{(1)}$ is a complete sufficient statistic for μ, and find the UMVUE of μ.
(b) Find the conditional expectation, $E[\bar{X} \mid U]$.
3. Let X_{1}, \ldots, X_{n} be iid having the common pdf

$$
\frac{1}{\sigma} \exp \left\{-\frac{(x-\mu)}{\sigma}\right\} I(x>\mu)
$$

where μ is unknown but σ is known with $-\infty<\mu<\infty$, and $0<\sigma<$ ∞. Assume a prior distribution for μ given by

$$
\pi(\mu)=e^{-\mu}, \mu>0
$$

Find the Bayes estimate for μ using quadratic loss function. (Hint: Note the range of values of μ.)
4. Let $X_{1}, \ldots X_{n}$ be iid with pdf,

$$
f(x \mid \theta)=c^{1 / \theta} \theta^{-1} x^{-(1+1 / \theta)} \quad x>c
$$

where $c>0$ is known, and $0<\theta<1$ is unknown.
(i) Find the method of moment estimator, $T\left(X_{1}, \ldots, X_{n}\right)$, of θ using the first moment.
(ii) Find asymptotic efficiency of $T\left(X_{1}, \ldots, X_{n}\right)$ with respect to the lower bound for the variance of unbiased estimators of θ.

PART II - PROBABILITY

5. Let $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ be a collection of i.i.d. random variables with $\mathbb{E} U_{n}=0$ and $\mathbb{E} U_{n}^{2}=\sigma^{2} \in(0, \infty)$. Consider random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ defined by $X_{n}=U_{n}+U_{2 n}, n \in \mathbb{N}$, and the partial sum $S_{n}=X_{1}+\cdots+X_{n}$. Find appropriate constants $\left\{a_{n}, b_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\frac{S_{n}-b_{n}}{a_{n}} \Rightarrow \mathcal{N}(0,1)
$$

6. State the Kolmogorov's 3 series theorem. Prove the sufficient part.
7. Consider random variables X and $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ defined on certain common probability space.
(i) Provide an example such that X_{n} converges to X in distribution, but not in probability.
(ii) Suppose that X_{n} converges to X in probability. Prove that X_{n} converges to X in distribution.
8. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. random variables with mean μ, variance $\sigma^{2} \in$ $(0, \infty)$ and finite fourth moment. Consider $Y_{n}=X_{n} X_{n+1}, n \in \mathbb{N}$. Prove that

$$
\frac{Y_{1}+\cdots+Y_{n}}{n} \rightarrow \mu_{Y} \text { in probability }
$$

as $n \rightarrow \infty$ for some constant μ_{Y}, and identify μ_{Y}.

