Statistics and Probability Prelim Exam

9am-1pm, Wednesday, May 4, 2016

Note: To pass this exam, you need to pass both Statistics and Probability parts

Statistics Part

- 1. Suppose $X_1, ..., X_n$ are iid with pdf $f(x|\theta) = \theta e^{-\theta x}, x > 0$, where $\theta > 0$ is unknown. Assume a prior distribution given by $\pi(\theta) = e^{-\theta}, \theta > 0$.
 - (a) Find the posterior distribution of θ and the posterior mean.
 - (b) Now, assume a loss function for estimating θ given by $L(\theta, a) = e^{(a-\theta)} (a-\theta) 1$. Find the Bayes rule for estimating θ based on this loss function.
- 2. Let $X_1, ..., X_n$ be a random sample from $Poisson(\mu)$ distribution. Suppose we want to estimate $\theta = P(X_1 = 0) = e^{-\mu}$. Let T_1 be the maximum likelihood estimator of θ , and let $T_2 = (1/n) \sum_i I_{\{0\}}(X_i)$ where $I_{\{0\}}(x)$ is the indicator function which is equal to 1 if x = 0, and is equal to 0 otherwise. Note that T_2 is the proportion of zeroes in the sample.
 - (a) Find T_1 and show that T_1 and T_2 are each asymptotically normally distributed.
 - (b) Find the asymptotic relative efficiency of T_2 with respect to T_1 .
 - (c) Determine if either or both of T_1 and T_2 are unbiased for θ .
- 3. Suppose that X_1, \ldots, X_n are iid Poisson(λ) where $0 < \lambda < \infty$ is unknown.
 - (a) Show that $T(X_1, \ldots, X_n) = \sum_{i=1}^n X_i$ is a complete sufficient statistic for λ .
 - (b) Find the Uniformly Minimum Variance Unbaised Estimator (UMVUE) of $\tau_1(\lambda) = \lambda^2$.
 - (c) Find the UMVUE of $\tau_2(\lambda) = \lambda e^{-\lambda}$, that is $P(X_1 = 1) = \lambda e^{-\lambda}$.
- 4. Let X_1, \ldots, X_n be a sample from the *inverse Gaussian* distribution $I(\mu, \tau)$ with density

$$\sqrt{\frac{\tau}{2\pi x^3}} \exp\left(-\frac{\tau}{2x\mu^2}(x-\mu)^2\right), \quad x > 0, \ \tau, \mu > 0.$$

- (a) Find the moment generating function of X_1 .
- (b) Show that $V = \frac{\tau}{X\mu^2} (X \mu)^2 \sim \chi_1^2$
- (c) Show that $\overline{X} = \sum_{i=1}^{n} X_i / n \sim I(\mu, n\tau)$.
- (d) Show that there exists a UMP test for testing $H_0: \mu \leq \mu_0$ versus. $H_1: \mu > \mu_0$ when τ is known.
- (e) Show that there exists a UMP test for testing $H_0: \tau \leq \tau_0$ versus. $H_1: \tau > \tau_0$ when μ is known.

Probability Part

5. Prove the following identity: for all $p \ge 1$ and any random variable X,

$$\mathbb{E}|X|^p = p \int_0^\infty x^{p-1} \mathbb{P}(|X| > x) dx.$$

- 6. Consider i.i.d. Poisson random variables $\{X_n\}_{n\in\mathbb{N}}$ with parameter $\lambda > 0$. Consider $Y_n := X_n X_{2n}, n \in \mathbb{N}$ and $T_n := Y_1 + \cdots + Y_n$.
 - (a) Compute $\mathbb{E}T_n$.
 - (b) Find an explicit constant C such that $\operatorname{Var}(T_n) \leq Cn$ for all $n \in \mathbb{N}$. Explain clearly how you determine the constant C. The constant does not have to be optimal and may depend on λ . However, it must be independent from n.
 - (c) Find a sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$, such that

$$\frac{T_n}{a_n} \to 1$$
 in probability.

Justify your result.

- 7. Let X_1, X_2, \ldots be independent non-negative random variables. Suppose that there exists constants $K < \infty$ such that $\sup_{n \in \mathbb{N}} \mathbb{E} \exp(X_n) \leq K$.
 - (a) Show that for all $x > 0, n \in \mathbb{N}$,

$$\mathbb{P}(X_n > x) \le Ke^{-x}.$$

(b) Show that for all $\epsilon > 0$,

$$\mathbb{P}\left(\frac{X_n}{\log n} > 1 + \epsilon \text{ i.o.}\right) = 0.$$

You may use the inequality in part (a) directly.

- 8. (a) State Lindeberg–Feller central limit theorem.
 - (b) Use Lindeberg–Feller central limit theorem to prove the following. Given a sequence $\{X_n\}_{n\in\mathbb{N}}$ of independent but not necessarily identically distributed random variables with mean zero, variance 2 and $\mathbb{E}|X_k|^4 < 17$, show that the central limit theorem for the partial sums $S_n := X_1 + \cdots + X_n$ holds in the form of

$$\frac{S_n - b_n}{a_n} \Rightarrow \mathcal{N}(0, 1),$$

and specify the normalizing constants $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$.