April 2014 Prelim - Statistics Part:

Problem 1

Let $X_1, X_2, ..., X_n$ be i.i.d from $N(\mu, \sigma^2)$ population. Suppose that $\sigma^2 = \lambda \mu^2$ with unknown $\lambda > 0$ and $\mu \in \mathbb{R}$. Find a Likelihood Ratio test for testing

 $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$.

Problem 2

Suppose that $\{X_1, X_2, ..., X_n\}$ and $\{Y_1, Y_2, ..., Y_n\}$ are independent samples, X_i 's from $\mathcal{E}(\lambda)$ population, and Y_j 's from $\mathcal{E}(\mu)$ population; λ and μ are unknown positive numbers. (The density function of X_1 is: $f(x) = \frac{1}{\lambda} e^{-x/\lambda}, x > 0.$)

[2a] Find the UMVUE W of $\theta = \frac{\mu}{\lambda}$.

[2b] Show that $\frac{n}{n-1}\frac{\mu}{\lambda}W$ follows F- distribution.

Problem 3

Let $X_1, X_2, ..., X_n$ be i.i.d. from Gamma distribution Gamma(k, θ) with an unknown $\theta > 0$, and known k. Let the prior be such that $\varpi = \frac{1}{\theta}$ has the Gamma distribution Gamma(α, γ) with known $\alpha > 0$ and $\gamma > 0$.

{ The density function of Gamma distribution Gamma(α, β) is : $f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, x > 0$ }

- [3a] Under the square error loss, find the Bayes estimator of θ , T(X₁, X₂,...,X_n).
- **[3b]** Compute the bias of $T(X_1, X_2, ..., X_n)$ as an estimator of θ .

Problem 4

If $X_1, X_2, ..., X_n$ are iid U(0, θ) random variables, it is known that the UMVE of

$$\theta$$
 is $\delta_n = \frac{n+1}{n} X_{[n;n]} = \frac{n+1}{n} \cdot \max\{X_1, X_2, ..., X_n\}$

- [4a] Determine the limit distribution of $n(\theta \delta_n)$ as $n \to \infty$
- [4b] Find the limit $\lim_{n \to \infty} \frac{E[X_{[n,n]} \theta]^2}{E[\delta_n \theta]^2}$

Part II Probability

Problem 5. Let $\{X_{nk} : k = 1, ..., n, n \in \mathbb{N}\}$ be a family of independent random variables satisfying

$$P\left(X_{nk} = \frac{k}{\sqrt{n}}\right) = P\left(X_{nk} = -\frac{k}{\sqrt{n}}\right) = P(X_{nk} = 0) = 1/3$$

Let $S_n = X_{n1} + \cdots + X_{nn}$. Prove that S_n/s_n converges in distribution to a standard normal random variable for a suitable sequence of real numbers s_n .

Some useful identities:

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$
$$\sum_{k=1}^{n} k^{2} = \frac{1}{6}n(n+1)(2n+1)$$
$$\sum_{k=1}^{n} k^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

Problem 6. Suppose $\{X_n\}$ is a sequence of independent nonnegative random variables. Show that if $\sum_{n=1}^{\infty} E(\min\{X_n, 1\}) < \infty$ then $\sum_n X_n < \infty$ with probability one.

- **Problem 7.** Let X_1, X_2, \ldots be independent and identically distributed random variables with $E|X_1| = \infty$.
 - (a) Show that for each real number a > 0

$$\sum_{n=1}^{\infty} P(|X_n| \ge an) = \infty.$$

(b) Show that

$$\sup_{n} \frac{1}{n} |X_n| = \infty$$

with probability one.

(c) Show that

$$\sup_{n} \frac{1}{n} |X_1 + X_2 + \dots + X_n| = \infty$$

with probability one.

Problem 8. (a) Let X be a positive random variable. Show by a method of your choice that

$$E(X) = \int_0^\infty P(X > x) dx.$$

(b) Explain why

$$\int_0^\infty P(X > x) dx = \int_0^\infty P(X \ge x) dx.$$