April 2014 Prelim - Statistics Part:

Problem 1

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d from $N\left(\mu, \sigma^{2}\right)$ population. Suppose that $\sigma^{2}=\lambda \mu^{2}$ with unknown $\lambda>0$ and $\mu \in \mathbb{R}$. Find a Likelihood Ratio test for testing

$$
\mathrm{H}_{0}: \lambda=1 \quad \text { vs. } \quad \mathrm{H}_{1}: \lambda \neq 1 .
$$

Problem 2

Suppose that $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ are independent samples, X_{i} 's from $\mathcal{E}(\boldsymbol{\lambda})$ population, and Y_{j} 's from $\mathcal{E}(\mu)$ population; λ and μ are unknown positive numbers . (The density function of X_{1} is: $f(x)=\frac{1}{\lambda} e^{-x / \lambda}, x>0$.)
[2a] Find the UMVUE W of $\theta=\frac{\mu}{\lambda}$.
[2b] Show that $\frac{\mathrm{n}}{\mathrm{n}-1} \frac{\mu}{\lambda} \mathrm{~W}$ follows F - distribution.

Problem 3

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. from Gamma distribution $\operatorname{Gamma}(k, \theta)$ with an unknown $\theta>0$, and known k. Let the prior be such that $\varpi=\frac{1}{\theta}$ has the Gamma distribution $\operatorname{Gamma}(\alpha, \gamma)$ with known $\alpha>$ 0 and $\gamma>0$.
$\left\{\right.$ The density function of Gamma distribution $\operatorname{Gamma}(\alpha, \beta)$ is: $\left.\mathrm{f}(\mathrm{x})=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} \mathrm{x}^{\alpha-1} \mathrm{e}^{-\mathrm{x} / \beta}, \mathrm{x}>0\right\}$
[3a] Under the square error loss, find the Bayes estimator of $\theta, T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
[3b] Compute the bias of $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ as an estimator of θ.

Problem 4

If $X_{1}, X_{2}, \ldots, X_{n}$ are iid $U(0, \theta)$ random variables, it is known that the UMVE of
θ is $\delta_{n}=\frac{n+1}{n} X_{[n ; n]}=\frac{n+1}{n} \cdot \max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
[4a] Determine the limit distribution of $n\left(\theta-\delta_{n}\right)$ as $n \rightarrow \infty$
[4b] Find the limit $\lim _{n \rightarrow \infty} \frac{E\left[X_{[n, n]}-\theta\right]^{2}}{E\left[\delta_{n}-\theta\right]^{2}}$

Part II Probability

Problem 5. Let $\left\{X_{n k}: k=1, \ldots, n, n \in \mathbb{N}\right\}$ be a family of independent random variables satisfying

$$
P\left(X_{n k}=\frac{k}{\sqrt{n}}\right)=P\left(X_{n k}=-\frac{k}{\sqrt{n}}\right)=P\left(X_{n k}=0\right)=1 / 3
$$

Let $S_{n}=X_{n 1}+\cdots+X_{n n}$. Prove that S_{n} / s_{n} converges in distribution to a standard normal random variable for a suitable sequence of real numbers s_{n}.
Some useful identities:

$$
\begin{aligned}
\sum_{k=1}^{n} k & =\frac{1}{2} n(n+1) \\
\sum_{k=1}^{n} k^{2} & =\frac{1}{6} n(n+1)(2 n+1) \\
\sum_{k=1}^{n} k^{3} & =\frac{1}{4} n^{2}(n+1)^{2}
\end{aligned}
$$

Problem 6. Suppose $\left\{X_{n}\right\}$ is a sequence of independent nonnegative random variables. Show that if $\sum_{n=1}^{\infty} E\left(\min \left\{X_{n}, 1\right\}\right)<\infty$ then $\sum_{n} X_{n}<\infty$ with probability one.

Problem 7. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with $E\left|X_{1}\right|=$ ∞.
(a) Show that for each real number $a>0$

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}\right| \geq a n\right)=\infty
$$

(b) Show that

$$
\sup _{n} \frac{1}{n}\left|X_{n}\right|=\infty
$$

with probability one.
(c) Show that

$$
\sup _{n} \frac{1}{n}\left|X_{1}+X_{2}+\ldots+X_{n}\right|=\infty
$$

with probability one.
Problem 8. (a) Let X be a positive random variable. Show by a method of your choice that

$$
E(X)=\int_{0}^{\infty} P(X>x) d x
$$

(b) Explain why

$$
\int_{0}^{\infty} P(X>x) d x=\int_{0}^{\infty} P(X \geq x) d x
$$

