Statistics & Probability preliminary examination

May 1, 2013

Instructions To pass this exam you need to pass both parts: probability and statistics.

Part I Statistics

1. (Stat) Let $X_1, X_2, ..., X_n$ be a random sample from the Cauchy location family, i.e. the common density function is:

$$f_{\theta}(x) = \frac{1}{\pi \{1 + (x - \theta)^2\}}$$

where $\theta \in \mathbb{R}$. Let $M_n = \text{median}(X_1, X_2, ..., X_n)$ be the sample median. Compute the relative efficiency of $\{M_n: n = 1, 2, ...\}$ as a sequence of estimators of the location parameter θ .

Hint: You may use the following well-known result about Order Statistics:

Theorem 1 Suppose that $X_1, X_2, ..., X_n$ is a random sample from a population with continuous distribution F, density function f. Let G be the inverse function of F. Assume that λ is a positive number such that $f(G(\lambda)) > 0$, and $\{\alpha_n\}$ is a sequence of positive integers such that $\lim_{n\to\infty} \sqrt{n} \{\frac{\alpha_n}{n} - \lambda\} = 0$.

Then

$$\sqrt{n}\left\{X_{[n;\alpha_n]} - G(\lambda)\right\} \xrightarrow{D} N\left(0, \frac{\lambda(1-\lambda)}{\{f(G(\lambda))\}^2}\right) \ as \ n \to \infty.$$

where $X_{[n;\alpha_n]}$ is the α_n th smallest among $X_1, X_2, ..., X_n$.

2. (Stat). Let $X_1, X_2, ..., X_n$ be a random sample from a population with density function

$$f(x|\theta) = \theta c^{\theta} x^{-(\theta+1)}, \ x > c_{\theta}$$

where c > 0 is known. Use a prior

$$\lambda(\theta) = \frac{b^a \theta^{a-1} e^{-b\theta}}{\Gamma(a)}, \ \theta > 0,$$

where a > 0, b > 0 are both user-specified and known. Find the posterior distribution and the Bayes estimator (under the square error loss), i.e. the posterior mean, of θ .

- 3. (Stat) Let $X_1, X_2, ..., X_n$ be a random sample from the Poisson distribution with mean $\theta > 0$.
 - (a) Find the (uniformly) minimum variance unbiased estimator of $a\theta + be^{-\theta} + c$, where a, b, and c are given positive numbers.
 - (b) Does there exist an unbiased estimator of $\frac{1}{\theta}$? JUSTIFY your answer!
- 4. (Stat) Assume that $X_1, X_2, ..., X_n$ is a random sample from the Rayleigh distribution with density function

$$f(x;\theta) = \frac{2x}{\theta} \exp\left(-\frac{x^2}{\theta}\right), \ x > 0,$$

where $\theta > 0$ is an unknown parameter. Obtain the Likelihood Ratio Test (LRT) statistic for testing $H_0: \theta = \theta_0$ versus $H_0: \theta \neq \theta_0$

where $\theta_0 > 0$ is a given constant. Write down the α - level critical region for the LRT as an inequality in terms of a sufficient statistic, and show how you would find the critical region that is valid for any sample size.

Part II Probability

5. (Prob) Suppose $X_{n,1}, X_{n,2}, \ldots$ are independent random variables centered at expectations (mean 0) and set $s_n^2 = \sum_{k=1}^n E(X_{n,k})^2$. Assume for all k that $|X_{n,k}| \leq M_n$ with probability 1 and that $M_n/s_n \to 0$. Let $Y_{n,i} = 3X_{n,i} + X_{n,i+1}$. Show that

$$\frac{Y_{n,1}+Y_{n,2}+\ldots+Y_{n,n}}{s_n}$$

converges in distribution and find the limiting distribution.

6. (Prob) Let X_1, X_2, \dots be independent and identically distributed random variables with distribution function

$$F(x) = \begin{cases} 0 & \text{if } x \le 1\\ 1 - x^{-a} & \text{if } x \ge 1 \end{cases}$$

where a > 0. Show that $Z_n = n^{-1/a} \max(X_1, X_2, ..., X_n)$ converges in distribution and find its limit.

- 7. (Prob) Let X_1, X_2, \ldots be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) . Suppose X_n has mean μ_n and variance σ_n^2 . Assume that $\lim_{n\to\infty} \mu_n = \mu \in \mathbb{R}$ and $\sum_{n=1}^{\infty} \sigma_n^2 < \infty$. Show that $X_n \to \mu$ almost surely.
- 8. (Prob) Prove Kolmogorov's inequality: Let X_1, \ldots, X_n be independent with mean zero and finite variances, and let $S_k = \sum_{j=1}^k X_j$. Then, for t > 0, prove that

$$\Pr(\max_{1 \le k \le n} |S_k| \ge t) \le \frac{\operatorname{Var}(S_n)}{t^2}$$