Statistics \& Probability preliminary examination

May 1, 2013

Instructions To pass this exam you need to pass both parts: probability and statistics.

Part I Statistics

1. (Stat) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the Cauchy location family, i.e. the common density function is:

$$
f_{\theta}(x)=\frac{1}{\pi\left\{1+(x-\theta)^{2}\right\}}
$$

where $\theta \in \mathbb{R}$. Let $M_{n}=\operatorname{median}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the sample median. Compute the relative efficiency of $\left\{M_{n}\right.$: $\mathrm{n}=1,2, \ldots\}$ as a sequence of estimators of the location parameter θ.

Hint: You may use the following well-known result about Order Statistics:
Theorem 1 Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population with continuous distribution F, density function f. Let G be the inverse function of F. Assume that λ is a positive number such that $f(G(\lambda))>0$, and $\left\{\alpha_{n}\right\}$ is a sequence of positive integers such that $\lim _{n \rightarrow \infty} \sqrt{n}\left\{\frac{\alpha_{n}}{n}-\lambda\right\}=0$.

Then

$$
\sqrt{n}\left\{X_{\left[n ; \alpha_{n}\right]}-G(\lambda)\right\} \xrightarrow{D} N\left(0, \frac{\lambda(1-\lambda)}{\{f(G(\lambda))\}^{2}}\right) \text { as } n \rightarrow \infty .
$$

where $X_{\left[n ; \alpha_{n}\right]}$ is the α_{n} th smallest among $X_{1}, X_{2}, \ldots, X_{n}$.
2. (Stat). Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with density function

$$
f(x \mid \theta)=\theta c^{\theta} x^{-(\theta+1)}, x>c
$$

where $c>0$ is known. Use a prior

$$
\lambda(\theta)=\frac{b^{a} \theta^{a-1} e^{-b \theta}}{\Gamma(a)}, \theta>0
$$

where $a>0, b>0$ are both user-specified and known. Find the posterior distribution and the Bayes estimator (under the square error loss), i.e. the posterior mean, of θ.
3. (Stat) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the Poisson distribution with mean $\theta>0$.
(a) Find the (uniformly) minimum variance unbiased estimator of $a \theta+b e^{-\theta}+c$, where a, b, and c are given positive numbers.
(b) Does there exist an unbiased estimator of $\frac{1}{\theta}$? JUSTIFY your answer!
4. (Stat) Assume that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the Rayleigh distribution with density function

$$
f(x ; \theta)=\frac{2 x}{\theta} \exp \left(-\frac{x^{2}}{\theta}\right), x>0
$$

where $\theta>0$ is an unknown parameter. Obtain the Likelihood Ratio Test (LRT) statistic for testing $H_{0}: \theta=\theta_{0}$ versus $H_{0}: \theta \neq \theta_{0}$
where $\theta_{0}>0$ is a given constant. Write down the α - level critical region for the LRT as an inequality in terms of a sufficient statistic, and show how you would find the critical region that is valid for any sample size.

Part II Probability

5. (Prob) Suppose $X_{n, 1}, X_{n, 2}, \ldots$ are independent random variables centered at expectations (mean 0) and set $s_{n}^{2}=\sum_{k=1}^{n} E\left(X_{n, k}\right)^{2}$. Assume for all k that $\left|X_{n, k}\right| \leq M_{n}$ with probability 1 and that $M_{n} / s_{n} \rightarrow 0$. Let $Y_{n, i}=3 X_{n, i}+X_{n, i+1}$. Show that

$$
\frac{Y_{n, 1}+Y_{n, 2}+\ldots+Y_{n, n}}{s_{n}}
$$

converges in distribution and find the limiting distribution.
6. (Prob) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with distribution function

$$
F(x)= \begin{cases}0 & \text { if } x \leq 1 \\ 1-x^{-a} & \text { if } x \geq 1\end{cases}
$$

where $a>0$. Show that $Z_{n}=n^{-1 / a} \max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ converges in distribution and find its limit.
7. (Prob) Let X_{1}, X_{2}, \ldots be a sequence of random variables on a probability space (Ω, \mathcal{F}, P). Suppose X_{n} has mean μ_{n} and variance σ_{n}^{2}. Assume that $\lim _{n \rightarrow \infty} \mu_{n}=\mu \in \mathbb{R}$ and $\sum_{n=1}^{\infty} \sigma_{n}^{2}<\infty$. Show that $X_{n} \rightarrow \mu$ almost surely.
8. (Prob) Prove Kolmogorov's inequality: Let X_{1}, \ldots, X_{n} be independent with mean zero and finite variances, and let $S_{k}=\sum_{j=1}^{k} X_{j}$. Then, for $t>0$, prove that

$$
\operatorname{Pr}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq t\right) \leq \frac{\operatorname{Var}\left(S_{n}\right)}{t^{2}}
$$

