Statistics & Probability preliminary examination

12 – 4 PM, August 21, 2013

Instructions

To pass this exam you need to pass both parts: probability and statistics.

Part I Statistics

Problem 1. Let X_i have exponential distribution with mean λ/θ_i , for i = 1, ..., n. Let Y_i have exponential distribution with mean $\lambda\theta_i$, for i = 1, ..., n. Assume that $X_1, ..., X_n, Y_1, ..., Y_n$ are all independent.

The parameters $\theta_1, ..., \theta_n$ and λ are all unknown positive numbers.

Find the maximum Likelihood estimate (MLE), $\hat{\lambda}$, of λ ,

Also find the bias and variance of $\hat{\lambda}$.

Problem 2. Let $X_1, X_2, ..., X_n$ be a random sample from $\text{Beta}(\mu, 1)$ and $Y_1, Y_2, ..., Y_n$ a random sample from $\text{Beta}(\theta, 1)$ distribution, and both samples are independent. Find a likelihood ratio test of

 $H_0: \mu = \theta$ vs $H_1: \mu \neq \theta$.

Express the test statistic in terms of

$$T = \frac{\sum_{j=1}^{n} \log(X_j)}{\sum_{j=1}^{n} \{\log(X_j) + \log(Y_j)\}}$$

and use it to find a test of size $\alpha = 0.05$, that is valid for any sample size

- **Problem 3.** Let $X_1, X_2, ..., X_n$ be i.i.d. from $\text{Beta}(\theta, \theta)$ distribution with an unknown $\theta > 0$. Let the prior of θ be $\mathcal{E}(\lambda)$ distribution with known λ , i. e. the prior density is $\frac{1}{\lambda}e^{-\frac{\theta}{\lambda}}$, $\theta > 0$. Under the square error loss, find the Bayes estimate (posterior mean) and the posterior standard deviation of θ .
- **Problem 4.** Suppose that $\{X_1, X_2, ..., X_n\}$ and $\{Y_1, Y_2, ..., Y_n\}$ are independent samples, X_i 's from $\mathcal{E}(\lambda)$ population, and Y'_j s from $\mathcal{E}(\mu)$ population; λ and μ are unknown positive numbers. Find the UMVUE (Uniformly Minimum Variance Unbiased Estimator) of $\theta = P(X_1 > Y_1)$.

Part II Probability

- **Problem 5.** Suppose that for each n = 1, 2, ... we have $P(X_n \le Y_n \le Z_n) = 1$. Assume that X_n converges to Z in probability, and Z_n converges to the same random variable Z in probability as $n \to \infty$. Show that Y_n converges to Z in probability as $n \to \infty$.
- **Problem 6.** Suppose $X_1, Y_1, X_2, Y_2, \ldots$, are independent identically distributed with mean zero and variance 1. For integer n, let

$$U_n = \frac{1}{n} \left(\sum_{j=1}^n X_j \right)^2 + \frac{1}{n} \left(\sum_{j=1}^n Y_j \right)^2.$$

Prove that $\lim_{n\to\infty} P(U_n \le u) = 1 - e^{-u/2}$ for u > 0.

Problem 7. Prove Etemadi's inequality: Let X_1, \ldots, X_n be independent, and denote $S_k = \sum_{j=1}^k X_j$. Then for $t \ge 0$

$$P(\max_{1 \le k \le n} |S_k| \ge 3t) \le 3 \max_{1 \le k \le n} P(|S_k| \ge t)$$

Problem 8. Suppose X > 0 has cumulative distribution function F(x). Prove that

$$E\left(\frac{1}{1+X}\right) = \int_0^\infty \frac{F(t)}{(1+t)^2} dt$$