Sample Questions for the PhD Preliminary Exam in Statistics and Probability

Department of Mathematical Sciences University of Cincinnati January 2013

Statistics

- 1. Suppose that X_1, \ldots, X_n are i.i.d. Poisson (θ) , and θ has the Gamma(a, b) prior distribution with mean ab, show that, given $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$, the posterior distribution is Gamma $(a + \sum_{j=1}^n x_j, \frac{b}{1+nb})$.
- 2. Let X and Y be independent exponential random variables, with densities $f_{\lambda}(x) = \frac{1}{\lambda}e^{-\frac{x}{\lambda}}[[x > 0]]$ and $g_{\mu}(y) = \frac{1}{\mu}e^{-\frac{y}{\mu}}[[y > 0]]$, respectively. We observe Z and W with

 $Z = \min(X, Y) \text{ and } W = \begin{cases} 1 & if \quad Z = X \\ 0 & if \quad Z = Y \end{cases}.$

Find the MLE of λ and μ .

3. Suppose that $X \sim Beta (\alpha, \beta)$, show that the Fisher information matrix is:

$$I(\alpha,\beta) = \begin{pmatrix} \psi'(\alpha) - \psi'(\alpha+\beta) & -\psi'(\alpha+\beta) \\ -\psi'(\alpha+\beta) & \psi'(\beta) - \psi'(\alpha+\beta) \end{pmatrix},$$

where $\psi(x) := \frac{\Gamma'(x)}{\Gamma(x)}$ (the digamma function) and $\psi'(x) = \frac{d}{dx}\psi(x)$ (the trigamma function.)

4. Let X_1, X_2, \ldots, X_n denote the incomes of n person chosen at random from a certain population. Suppose that

$$f(x,\theta) = c^{\theta} \theta x^{-(1+\theta)}, \ x > c,$$

where $\theta > 1$ and c > 0. (c is known)

- a Express mean income μ in terms of θ .
- b Find the optimal test statistic for testing H : $\mu = \mu_0$ vs. K : $\mu > \mu_0$
- c Use the central limit theorem to find a normal approximation to critical value of test in part [b].

5. Suppose that $X_1, ..., X_n$ are i.i.d. Poisson (θ) , and θ has the Gamma(a, b) prior distribution whose mean is ab, show that, for a > k, the Bayes estimator under the loss function $L_k(d, \theta) = \frac{(\theta - d)^2}{\theta^k}$ is given by

$$\delta_k(\overline{x}) = \frac{E(\Theta^{1-k}|\overline{x})}{E(\Theta^{-k}|\overline{x})} = \frac{b}{1+nb}(n\overline{x}+a-k),$$

where $\overline{x} := \frac{1}{n} \sum_{j=1}^{n} x_j$.

- 6. Suppose that X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ with unknown $\mu \in \mathbb{R}$ and unknown $\sigma^2 > 0$. Let $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+$.
 - (a) Find the UMVUE $\widehat{q}_n(X_1, X_2, ..., X_n)$ of $q(\theta) = \frac{\theta_1}{\sqrt{\theta_2}} = \frac{\mu}{\sigma}$.
 - (b) Find the limiting distribution of $\sqrt{n}\{\widehat{q}_n(X_1, X_2, ..., X_n) \frac{\mu}{\sigma}\}$ as $n \to \infty$.

Probability

1. Suppose X_1, X_2, \ldots are independent identically distributed random variables taking values $1, \ldots, r$ with probabilities p_1, \ldots, p_r . Let $L(X_1, \ldots, X_n)$ denote the likelihood of the sequence X_1, \ldots, X_n . Prove that

$$-\frac{1}{n}\log L(X_1,\ldots,X_n)\to h$$

where $h = -\sum_{k=1}^{r} p_r \log p_r$ is Shannon's entropy.

- 2. Suppose that $X_1 \leq X_2 \leq \ldots$ and that $X_n \xrightarrow{P} X$. Show that $X_n \to X$ with probability 1.
- 3. Suppose X_n has density $f_n(x) = 1 + \cos(2\pi nx)$ on interval [0,1]. Show that $X_n \Rightarrow X$ for some X.
- 4. Suppose X_1, X_2, \ldots are independent random variables with distribution $\Pr(X_k = 1) = p_k$ and $\Pr(X_k = 0) = 1 p_k$. Prove that if $\sum Var(X_k) = \infty$ then $\sum_{k=1}^{n} (X_k - p_k)$

$$\frac{\sum_{k=1} (X_k - p_k)}{\sqrt{\sum_{k=1}^n p_k (1 - p_k)}} \Rightarrow N(0, 1).$$

5. Prove that for X > 0

$$E(e^X) = 1 + \int_0^\infty e^t \Pr(X > t) \, dt.$$

6. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous. Show that $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ imply $f(X_n, Y_n) \xrightarrow{P} f(X, Y)$.