Sample Questions for the PhD Preliminary Exam in Statistics and Probability

Department of Mathematical Sciences
University of Cincinnati
January 2013

Statistics

1. Suppose that X_{1}, \ldots, X_{n} are i.i.d. Poisson (θ), and θ has the Gamma(a, b) prior distribution with mean $a b$, show that, given $\left(X_{1}, \ldots, X_{n}\right)=$ $\left(x_{1}, \ldots, x_{n}\right)$, the posterior distribution is $\operatorname{Gamma}\left(\mathrm{a}+\sum_{j=1}^{n} x_{j}, \frac{b}{1+n b}\right)$.
2. Let X and Y be independent exponential random variables, with densities $f_{\lambda}(x)=\frac{1}{\lambda} e^{-\frac{x}{\lambda}}[[x>0]]$ and $g_{\mu}(y)=\frac{1}{\mu} e^{-\frac{y}{\mu}}[[y>0]]$, respectively. We observe Z and W with
$Z=\min (X, Y)$ and $W=\left\{\begin{array}{lll}1 & \text { if } & Z=X \\ 0 & \text { if } & Z=Y\end{array}\right.$.
Find the MLE of λ and μ.
3. Suppose that $\mathrm{X} \sim \operatorname{Beta}(\alpha, \beta)$, show that the Fisher information matrix is:

$$
I(\alpha, \beta)=\left(\begin{array}{cc}
\psi^{\prime}(\alpha)-\psi^{\prime}(\alpha+\beta) & -\psi^{\prime}(\alpha+\beta) \\
-\psi^{\prime}(\alpha+\beta) & \psi^{\prime}(\beta)-\psi^{\prime}(\alpha+\beta)
\end{array}\right)
$$

where $\psi(x):=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$ (the digamma function) and $\psi^{\prime}(x)=\frac{d}{d x} \psi(x)$ (the trigamma function.)
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote the incomes of n person chosen at random from a certain population. Suppose that

$$
f(x, \theta)=c^{\theta} \theta x^{-(1+\theta)}, x>c
$$

where $\theta>1$ and $c>0$. (c is known)
a Express mean income μ in terms of θ.
b Find the optimal test statistic for testing $\mathrm{H}: \mu=\mu_{0}$ vs. $\mathrm{K}: \mu>\mu_{0}$
c Use the central limit theorem to find a normal approximation to critical value of test in part [b].
5. Suppose that X_{1}, \ldots, X_{n} are i.i.d. Poisson(θ), and θ has the Gamma(a, b) prior distribution whose mean is $a b$, show that, for $a>k$, the Bayes estimator under the loss function $L_{k}(d, \theta)=\frac{(\theta-d)^{2}}{\theta^{k}}$ is given by

$$
\delta_{k}(\bar{x})=\frac{E\left(\Theta^{1-k} \mid \bar{x}\right)}{\left.E\left(\Theta^{-k} \mid \bar{x}\right)\right)}=\frac{b}{1+n b}(n \bar{x}+a-k),
$$

where $\bar{x}:=\frac{1}{n} \sum_{j=1}^{n} x_{j}$.
6. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with unknown $\mu \in \mathbb{R}$ and unknown $\sigma^{2}>0$. Let $\theta=\left(\theta_{1}, \theta_{2}\right)=\left(\mu, \sigma^{2}\right) \in \Theta=$ $\mathbb{R} \times \mathbb{R}_{+}$.
(a) Find the UMVUE $\widehat{q}_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of $q(\theta)=\frac{\theta_{1}}{\sqrt{\theta_{2}}}=\frac{\mu}{\sigma}$.
(b) Find the limiting distribution of $\sqrt{n}\left\{\widehat{q}_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)-\frac{\mu}{\sigma}\right\}$ as $n \rightarrow$ ∞.

Probability

1. Suppose X_{1}, X_{2}, \ldots are independent identically distributed random variables taking values $1, \ldots, r$ with probabilities p_{1}, \ldots, p_{r}. Let $L\left(X_{1}, \ldots, X_{n}\right)$ denote the likelihood of the sequence X_{1}, \ldots, X_{n}. Prove that

$$
-\frac{1}{n} \log L\left(X_{1}, \ldots, X_{n}\right) \rightarrow h
$$

where $h=-\sum_{k=1}^{r} p_{r} \log p_{r}$ is Shannon's entropy.
2. Suppose that $X_{1} \leq X_{2} \leq \ldots$ and that $X_{n} \xrightarrow{P} X$. Show that $X_{n} \rightarrow X$ with probability 1.
3. Suppose X_{n} has density $f_{n}(x)=1+\cos (2 \pi n x)$ on interval $[0,1]$. Show that $X_{n} \Rightarrow X$ for some X.
4. Suppose X_{1}, X_{2}, \ldots are independent random variables with distribution $\operatorname{Pr}\left(X_{k}=1\right)=p_{k}$ and $\operatorname{Pr}\left(X_{k}=0\right)=1-p_{k}$. Prove that if $\sum \operatorname{Var}\left(X_{k}\right)=\infty$ then

$$
\frac{\sum_{k=1}^{n}\left(X_{k}-p_{k}\right)}{\sqrt{\sum_{k=1}^{n} p_{k}\left(1-p_{k}\right)}} \Rightarrow N(0,1)
$$

5. Prove that for $X>0$

$$
E\left(e^{X}\right)=1+\int_{0}^{\infty} e^{t} \operatorname{Pr}(X>t) d t
$$

6. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous. Show that $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$ imply $f\left(X_{n}, Y_{n}\right) \xrightarrow{P} f(X, Y)$.
