Statistics Qualifying Exam

$1-5 \mathrm{pm}$, Monday, September 15. 2008

Name :

1. Let the p.m.f. $p(x)$ be positive at $x=-1,0,1$ and zero elsewhere.
(a) If $p(0)=\frac{2}{5}$, find $E\left(X^{2}\right)$.
(b) If $p(0)=\frac{2}{5}$ and if $E(X)=\frac{1}{3}$, determine the p.m.f. of X.
2. Let X_{1}, \ldots, X_{4} be i.i.d. with the common pdf given by $f(x)=\frac{1}{\beta} e^{-x / \beta}, x>0, \beta>0$. Define the order statistics $Y_{1} \leq Y_{2} \leq \ldots \leq Y_{4}$. Let us denote $U_{1}=Y_{1}, U_{2}=Y_{2}-Y_{1}, \ldots, U_{4}=Y_{4}-Y_{3}$.
(a) Show that $U_{1}, U_{2}, \ldots, U_{4}$ are independent and that each U_{i} has the exponential distribution with mean $(4-i+1)^{-1} \beta, i=1,2, \ldots, 4$.
(b) Show that $E\left(Y_{k}\right)=\beta\left[\frac{1}{4}+\frac{1}{3}+\cdots+\frac{1}{4-k+1}\right]$ for all $k=1, \ldots, 3$.
3. Let $X_{1}, X_{2} \ldots, X_{5}$ be i.i.d. random variables with common probability density function, for $0<\theta<\infty$,

$$
f(x ; \theta)=\left\{\begin{array}{ll}
\frac{1}{2 \theta}, & 0<x<2 \theta \\
0, & \text { elsewhere }
\end{array} .\right.
$$

(a) Find the pdf of $Y_{5}=\max \left\{X_{1}, X_{2}, \ldots, X_{5}\right\}$.
(b) Derive a two-sided 95% confidence interval for θ based on Y_{5}.
4. Suppose that X_{1}, \ldots, X_{n} are i.i.d. $N\left(\mu, \sigma^{2}\right)$ where μ, σ are both unknown with $\mu \in(-\infty, \infty), \sigma \in$ $(0, \infty), n \geq 2$. It is well known that (\bar{X}, S^{2}) is a complete sufficient statistics of $\left(\mu, \sigma^{2}\right)$.
(a) Find the minimum variance unbiased estimator of μ.
(b) Find the minimum variance unbiased estimator of σ^{2}.
(c) Find the minimum variance unbiased estimator of $\mu \sigma^{2}$.
5. Suppose that $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ and that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}$. What is the distribution of $\left(X_{1}+X_{2}\right)^{2 ?}$?
6. The following data show the effect of two soporific drugs (change in hours of sleep) on two groups consisting of 10 patients each:

group	Change in hours of sleep	mean	Standard deviation
1	$0.7,-1.6,-0.2,-1.2,-0.1,3.4,3.7,0.8,0.0,2.0$	0.75	1.79
2	$1.9,0.8,1.1,0.1,-0.1,4.4,5.5,1.6,4.6,3.4$	2.33	2.00

Perform a two-sample t-test for the effect of two soporific drugs:
H0 : The effect of drug $1=$ the effect of drug 2
v.s. Ha : The effect of drug 1 is not equal to the effect of drug 2.
7. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample from a density that has mean μ and variance σ^{2}.
(a) Show that $\sum_{i=1}^{n} a_{i} Y_{i}$ is an unbiased estimator of μ for any sets of constants $a_{1}, a_{2}, \ldots, a_{n}$ Satisfying $\sum_{i=1}^{n} a_{i}=1$.
(b) If $\sum_{i=1}^{n} a_{i}=1$, show that the variance of $\left\lfloor\sum_{i=1}^{n} a_{i} Y_{j}\right\rfloor$ is minimized for $a_{i}=\frac{1}{n}, i=1, \ldots, n$.
8. Depression is a significant factor in job performance for police officers. A large police department decided to study the association between marital status and depression. A large group of volunteers answered a questionnaire about their personal lives, and were then assessed for depression on two occasions. The depression score for each volunteer was the average of these two assessments. 4 marital classes were determined: never-married (12), married (34), widowed (8), divorced (36), with final sample sizes indicated in the brackets.
a) Fill in the 3 missing entries in the ANOVA Table below:

Source	Degree of freedom
Marital class	
Error	
total	

b) The police chief wishes to compare the mean levels of depression for the married group versus the mean for the other 3 groups. Write down an appropriate contrast.
c) The police chief also wishes to compare the widowed and divorced groups. Write down an appropriate contrast.
d) The police chief notices that the level of depression in the divorced group is much higher than that in the other 3 groups, and that the next highest level of depression is in the widowed group. The t-value for the contrast is between the divorced and widowed group is $t^{*}=3.2$. What is the p -value for this contrast (without any multiple comparisons adjustment)?

9. Given the following information:

FULL MODEL

Number Model	R-Square	MSE	SSE	Variables in Model
1	0.8546	0.01203	0.09626	X 2
1	0.8270	0.01432	0.11456	X4
1	0.6803	0.02646	0.21169	X3
1	0.2759	0.05993	0.47944	X1
2	0.9527	0.00447	0.03131	X 2 x 4
2	0.9367	0.00598	0.04189	$\times 2 \times 3$
2	0.9046	0.00902	0.06315	$\mathrm{X1} \times 2$
2	0.8737	0.01195	0.08362	81×4
2	0.8361	0.01550	0.10853	$\times 3 \times 4$
2	0.7289	0.02564	0.17949	81×3
3	0.9606	0.00435	0.02611	$\times 2 \times 3 \times 4$
3	0.9542	0.00506	0.03034	$\mathrm{X1} \mathrm{X} 2 \mathrm{X} 4$
3	0.9370	0.00696	0.04174	X1 82 83
3	0.9251	0.00827	0.04959	X1 X3 X4
4	0.9723	0.00367	0.01834	$\mathrm{X1} \times 2 \times 3 \times 4$

a) Use the information to test $\mathrm{H}_{0}: \beta_{2}=0$ in the model $\mathrm{Y}=\mathrm{X} 2$
b) Use the information to test $\mathrm{H}_{0}: \beta_{3}=\beta_{4}=0$ in the mode $\mathrm{Y}=\mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3 \mathrm{X} 4$
c) Perform backward regression. You must justify each step

