Calculus Contest
Name:
Show all work. No Calculators.
S.S. \#

Section \#

1. Find the derivative of $f(x)=x|x|^{p}$, where $p>0$ is a real number. The answer should be written as a single formula.
2. (i) Prove that the number $\sqrt{2}$ is irrational.
(ii) Assuming that $\sqrt{2}$ is irrational, prove that $\sqrt{2}+\sqrt{3}$ is irrational.
3. Find the limit

$$
\lim _{x \rightarrow 0} x e^{-\frac{1}{x^{2}}}
$$

4. Evaluate the integral

$$
\int_{0}^{\infty} e^{-x} \sin x d x
$$

5. Evaluate the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{2 n^{2}-n}
$$

Hint: Write each term of the series as a difference of two (partial fractions!), and then relate this series to that for $\ln 2$.
6. Evaluate the integral

$$
\int\left(x^{6}+x^{3}\right) \sqrt[3]{x^{3}+2} d x
$$

7. Prove that there exists a positive number $\lambda, \lambda \in(0,1)$, so that

$$
\int_{0}^{\pi} x^{\lambda} \sin x d x=3
$$

8. a) Find a strictly positive unbounded function (i.e., with at least one arbitrarily large peak) on the real line with finite area. Feel free to splice functions together.
b) Find a strictly positive function on the real line with infinite area but finite volume of revolution.
c) Find a strictly positive function on the real line with infinite surface area but finite volume.
