Calculus Contest May 15, 2007.

Name:
Show all work. No Calculators.
UCID \#
Section \#

1. Find the derivative of $f(x)=x|x|^{p}$, where $p>0$ is a real number. The answer should be written as a single formula. Is this function even or odd?
2. Calculate $\int_{0}^{\pi / 2} \sqrt{1+\sin x} d x$.

Hint: $1=\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}$. (Or do it your way.)
3. For any positive integer n

$$
n^{2}=n+n+\ldots+n,
$$

where the sum on the right has n terms. Differentiating both sides,

$$
2 n=1+1+\ldots+1,
$$

i.e.

$$
2 n=n .
$$

Dividing by n,

$$
2=1 .
$$

Is there anything wrong with this argument? Explain.
4. Evaluate the limit

$$
\lim _{x \rightarrow-2} \frac{|x+1|-1}{4-x^{2}}
$$

Justify your answer.
5. (i) Let $g(x)=\int_{0}^{x}(x-t) f(t) d t$. Show that $g^{\prime \prime}(x)=f(x)$.

Hint: Break the integral into two pieces. (Or do it your way.)
(ii) Let $G(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1} f(t) d t$. Evaluate the n-th derivative $G^{(n)}(x)$.
6. Evaluate the integral

$$
\int x^{3} \sin \left(x^{2}\right) d x
$$

7. (i) Does the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n}$ converge? Explain.
(ii) Does the series $\Sigma_{n=2}^{\infty} \frac{(-1)^{n}}{n}\left[\frac{(-1)^{n}}{\ln n}+1\right]$ converge? Explain.
(iii) State the limit comparison test. Will the test remain valid if one no longer requires that both series have positive terms? Explain.
