Name:
M\#:_ Instructor: \qquad
Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in a clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1. Find $\frac{d}{d x}(f(x))$ if $\frac{d}{d x}(f(3 x))=6 x$.

Solution: Answer: $f^{\prime}(x)=2 x / 3$.
Set $u=3 x$. Then $f^{\prime}(u)=\frac{2}{3} u$, so $f^{\prime}(x)=\frac{2}{3} x$.
2. Find a polynomial $f(x)$ with the property that $f(-1)$ and $f(1)$ are local maxima and $f(0)=-1$ is a local minimum.

Solution: Require that $f^{\prime}(-1)=f^{\prime}(0)=f^{\prime}(1)$, that $f^{\prime}>0$ for $x<-1$ and $0<x<1$ while $f^{\prime}<0$ for $-1<x<0$ and $x>1$.
One such function is $f^{\prime}(x)=-x(x+1)(x-1)$. In that case $f(x)=x^{2} / 2-x^{4} / 4$ has the required extremal properties and $f(x)=x^{2} / 2-x^{4} / 4-1$ also has $f(0)=-1$.
3. What is the maximum value of $g(x)=|\sin (x)-2 \cos (x)|^{2}$?

Solution: Answer: 5.

Pick θ in $(0, \pi / 2)$ so that $\cos (\theta)=1 / \sqrt{5}$. Then $\sin (\theta)=2 / \sqrt{5}$ and

$$
\begin{aligned}
\sin (x)-2 \cos (x) & =\sqrt{5}(\sin (x) \cos (\theta)-\cos (x) \sin (\theta)) \\
& =\sqrt{5} \sin (x-\theta)
\end{aligned}
$$

Therefore

$$
g(x)=5 \sin ^{2}(x-\theta)
$$

from which we see that the maximum value of g is 5 since $\sin ^{2}$ assumes its maximum value 1 .
4. For what values of the constant t does the function

$$
F(x)=\left(x^{2}+t\right) e^{x}
$$

have two distinct inflection points?

Solution: Answer: $t<2$.
$F^{\prime \prime}=\left(x^{2}+4 x+2+t\right) e^{x}$ the requirement that $F^{\prime \prime}$ have two distinct roots reduces to $16-4(2+t)>0$ and that says $t<2$.
5. Evaluate

$$
\int_{0}^{1} \sqrt[8]{1-x^{6}}-\sqrt[6]{1-x^{8}} d x
$$

Hint: what is the inverse of the function $y=\left(1-x^{a}\right)^{b}$?

Solution: Answer:

$$
\int_{0}^{1} \sqrt[8]{1-x^{6}}-\sqrt[6]{1-x^{8}} d x=0
$$

The functions $\sqrt[6]{1-x^{8}}$ and $\sqrt[8]{1-x^{6}}$ are both monotone decreasing on $0 \leq x \leq 1$ and each is the inverse of the other. That means their graphs are reflections of each other in the line $y=x$ as are the areas under the graph of one of them and to the left of the graph of the other. These area are represented by $\int_{0}^{1} \sqrt[6]{1-x^{8}} d x$ and $\int_{0}^{1} \sqrt[8]{1-x^{6}} d x$. Reflected areas are congruent. So the integral over $[0,1]$ of the difference of the functions is 0 .
You could try to actually evaluate the antiderivative and that'd be a fine, if more time consuming, approach. And, you'd need to know facts about hypergeometric functions. Perhaps easier is the following: start by evaluating $\int_{0}^{1} \sqrt[6]{1-x^{8}} d x$ by substitution setting $y=y(x)=\sqrt[6]{1-x^{8}}$. Then $y(0)=1$ and $y(1)=0$ and $x(y)=\sqrt[8]{1-y^{6}}$ so (integrating by substitution and then integrating by parts)

$$
\begin{aligned}
\int_{0}^{1} \sqrt[6]{1-x^{8}} d x & =\int_{1}^{0} y(x) x^{\prime}(y) d y \\
& =\left.y x(y)\right|_{1} ^{0}-\int_{1}^{0} x(y) d y \\
& =0-\int_{1}^{0} x(y) d y \\
& =\int_{0}^{1} \sqrt[8]{1-y^{6}} d y
\end{aligned}
$$

6. For which values of t is the series

$$
\sum_{n \geq 1} n^{1 / n^{t}}-1
$$

convergent?

Solution: Answer: The series converges if and only if $t>1$.
Write the sum as $\sum_{n \geq 1} e^{\frac{\log (n)}{n^{t}}}-1$.
Since $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ the limit comparison test says it is sufficient to consider the series

$$
\sum_{n \geq 1} \frac{\log n}{n^{t}}
$$

If $t \leq 1$ then $\log (n) / n^{t}>1 / n$ for large n and the series diverges by comparing with the harmonic series.
It $t>1$ then for large n we have $\log (n)<n^{\frac{t-1}{2}}$ so that for large n,

$$
\frac{\log n}{n^{t}}<\frac{1}{n^{(t+1) / 2}}
$$

And then, because $(t+1) / 2>1$, the series

$$
\sum_{1} \frac{1}{n^{(t+1) / 2}}
$$

converges.
7. Of all the parallelograms $A B C D$ having A and C on the y-axis, having B and D on the x-axis and containing the ellipse $x^{2} / 2+y^{2} / 3=1$, which has the smallest area?

Solution: Answer: the one with vertices $(\pm 2,0),(0, \pm \sqrt{6})$ and area $A=4 \sqrt{6}$.

Due to the symmetry of the ellipse with respect to the x, y, axes it is enough to work in the first quadrant and minimize the area of a right triangle with 90 angle at the origin. Clearly the triangle is minimized when the hypotenuse is tangent to the ellipse.

Setting

$$
\begin{aligned}
& u=x / \sqrt{2} \\
& v=y / \sqrt{3}
\end{aligned}
$$

gives the ellipse the equation $u^{2}+v^{2}=1$ and changes areas by

$$
\Delta x \Delta y=\sqrt{6} \Delta u \Delta v
$$

At the point $(u, v)=(\cos \theta, \sin \theta)$ the tangent to the circle has slope $-\cot \theta$ and equation

$$
v-\sin \theta=-\cot \theta(u-\cos \theta)
$$

The u and v intercepts of this line are $\left(\frac{1}{\cos \theta}, 0\right)$ and $\left(0, \frac{1}{\sin \theta}\right)$ respectively so the area of the triangle is

$$
A=\frac{1}{2} \frac{1}{\sin \theta} \frac{1}{\cos \theta}=\frac{1}{\sin 2 \theta} .
$$

The area is minimized when $\sin 2 \theta$ takes its maximal value - at $\theta=\pi / 4$ and the minimal value is $A=1$. The point of tangency is $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
In the x, y plane the intercepts are $x=\sqrt{2} u=2$ and $y=\sqrt{3} v=\sqrt{6}$, and the minimal area is then $A=\sqrt{6}$.
So the whole parallelogram we needed to find has vertices $(\pm 2,0),(0, \pm \sqrt{6})$ and area $A=4 \sqrt{6}$.

