
Solutions Calculus Contest 2011

1. A square S1 is inscribed in the unit circle C1 center at the origin.  Inside the square S1 a second circle C2 with center the
origin is inscribed and a second square S2  is inscribed in the second circle.  This is repeated infinitely many times.  Find the
sum of the areas ⁄HAreaCi - Area Si) pictured as the gray regions in the diagram below

…

SOLUTION.   The area of a circle of radius r minus the area of an inscribed square is p r2 - J
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.  This means that the sum of the areas between the circle and inscribed squares is
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= 2 Hp - 2L = 2.28319.

2. Suppose that f  is a continuous real-valued function on [0, 2] such that f H0L = f H2L.  Show that there a number z with
1 § z § 2 such that f HzL = f Hz - 1L.

SOLUTION.  The function gHzL = f HzL - f Hz - 1L has the property 

gH1L = f H1L - f H0L and

gH2L = f H2L - f H1L = f H0L - f H1L.

This means that g changes sign on @1, 2] . Due to the Intermediate Value Theorm, there is a z  in @1, 2D with gHzL = 0 or
equivalently, with f HzL = f Hz - 1L.
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4. A rectangle has two sides along the positive coordinate axes and its upper right hand corner point lies on the curve
x3 - 2 x y2 + y3 + 1 = 0.   How fast  is  the area of  the rectangle  changing as  the point  passes  through passes  through the
position H2, 3L if it is moving so that dx

dt
= 1 units per second.

SOLUTION.  Taking the derivative of x3 - 2 x y2 + y3 + 1 = 0, we get

3 x2 x° - 2 x° y2 - 4 x y y° + 3 y2 y° = 0.

Substituting x = 2, y = 3, x° = 1, we get 

12 - 18 - 24 y° + 27 y° = 0

which gives - 6 + 3 y° = 0 or y° = 2.  Now the area of the rectangle is A = x y and so we get

d A
d t

= x° y + x y° = 1 ÿ3 + 2 ÿ2 = 7 square units per second.

5. Find the  volume generated  by rotating  the  area  between the  curves  y = 5 x  and y = x2  for  0 § x § 3 about  the
x - axis.  HINT: washers

SOLUTION.  The volume V  is given by integrating the cross sectional area AHxL perpendicular to the x axis over the interval
[0, 3].  We get
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6. Find the shaded area of the polar region given below
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SOLUTION.   The area A of the shaded region is

A = 2 J
1
2 Ÿ0

pê4r2 „q + 1
2 Ÿpê4

pê2r2 „qN = Ÿ0
pê41 „q + Ÿpê4

pê2
H1 + cos 2 qL2 „q

since the curves interesect at q = p ê4 because
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