Solutions Calculus Contest 2011

1. A square S_{1} is inscribed in the unit circle C_{1} center at the origin. Inside the square S_{1} a second circle C_{2} with center the origin is inscribed and a second square S_{2} is inscribed in the second circle. This is repeated infinitely many times. Find the sum of the areas $\sum\left(\right.$ Area $C_{i}-$ Area $\left.S_{i}\right)$ pictured as the gray regions in the diagram below

SOLUTION. The area of a circle of radius r minus the area of an inscribed square is $\pi r^{2}-\left(\frac{2 r}{\sqrt{2}}\right)^{2}=r^{2}(\pi-2)$ since the diagonal of the square is the diameter of the circle which means that the inscribed square has side $\frac{2 r}{\sqrt{2}}$. The circle inscribed in the square has radius $\frac{r}{\sqrt{2}}$. This means that the sum of the areas between the circle and inscribed squares is
Areas $=(\pi-2)\left(1^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\ldots\right)=(\pi-2) \frac{1}{1-1 / 2}=2(\pi-2)=2.28319$.
2. \quad Suppose that f is a continuous real-valued function on $[0,2]$ such that $f(0)=f(2)$. Show that there a number ζ with $1 \leq \zeta \leq 2$ such that $f(\zeta)=f(\zeta-1)$.
SOLUTION. The function $g(\zeta)=f(\zeta)-f(\zeta-1)$ has the property

$$
\begin{aligned}
& g(1)=f(1)-f(0) \quad \text { and } \\
& g(2)=f(2)-f(1)=f(0)-f(1)
\end{aligned}
$$

This means that g changes sign on $[1,2]$. Due to the Intermediate Value Theorm, there is a ζ in $[1,2]$ with $g(\zeta)=0$ or equivalently, with $f(\zeta)=f(\zeta-1)$.
3. Evaluate $\int \frac{x+1}{x^{2}+\sqrt{2} x+1} d x$.

SOLUTION. We have that

$$
\begin{aligned}
& \int \frac{x+1}{x^{2}+\sqrt{2} x+1} d x=\frac{1}{2} \int \frac{2 x+\sqrt{2}}{x^{2}+\sqrt{2} x+1} d x+\frac{1}{2} \int \frac{2-\sqrt{2}}{x^{2}+\sqrt{2} x+1} d x \\
&=\frac{1}{2} \ln \left|x^{2}+\sqrt{2} x+1\right|+\frac{2-\sqrt{2}}{2} \int \frac{1}{\left(x+\frac{1}{\sqrt{2}}\right)^{2}+\frac{1}{2}} d x \\
&\left(\frac{u}{\sqrt{2}}=\left(x+\frac{1}{\sqrt{2}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \ln \left|x^{2}+\sqrt{2} x+1\right|+\frac{2-\sqrt{2}}{2} \int \frac{1}{\frac{u^{2}}{2}+\frac{1}{2}} \frac{d u}{\sqrt{2}} \\
& =\frac{1}{2} \ln \left|x^{2}+\sqrt{2} x+1\right|+\frac{2-\sqrt{2}}{\sqrt{2}} \int \frac{1}{u^{2}+1} d u \\
& =\frac{1}{2} \ln \left|x^{2}+\sqrt{2} x+1\right|+\frac{2-\sqrt{2}}{\sqrt{2}} \arctan \left(\sqrt{2}\left(x+\frac{1}{\sqrt{2}}\right)\right) \\
& \left.=\frac{1}{2} \ln \left|x^{2}+\sqrt{2} x+1\right|+\frac{2-\sqrt{2}}{\sqrt{2}} \arctan (\sqrt{2} x+1)\right)
\end{aligned}
$$

4. A rectangle has two sides along the positive coordinate axes and its upper right hand corner point lies on the curve $x^{3}-2 x y^{2}+y^{3}+1=0$. How fast is the area of the rectangle changing as the point passes through passes through the position $(2,3)$ if it is moving so that $\frac{\mathrm{dx}}{\mathrm{dt}}=1$ units per second.

SOLUTION. Taking the derivative of $x^{3}-2 x y^{2}+y^{3}+1=0$, we get

$$
3 x^{2} \dot{x}-2 \dot{x} y^{2}-4 x y \dot{y}+3 y^{2} \dot{y}=0
$$

Substituting $x=2, y=3, \dot{x}=1$, we get

$$
12-18-24 \dot{y}+27 \dot{y}=0
$$

which gives $-6+3 \dot{y}=0$ or $\dot{y}=2$. Now the area of the rectangle is $A=x y$ and so we get

$$
\frac{d A}{d t}=\dot{x} y+x \dot{y}=1 \cdot 3+2 \cdot 2=7 \text { square units per second. }
$$

5. Find the volume generated by rotating the area between the curves $y=5 x$ and $y=x^{2}$ for $0 \leq x \leq 3$ about the x - axis. HINT: washers

SOLUTION. The volume V is given by integrating the cross sectional area $A(x)$ perpendicular to the x axis over the interval [0, 3]. We get

$$
\begin{aligned}
& V=\int_{0}^{3} A(x) d x=\int_{0}^{3}\left((5 x)^{2}-\left(x^{2}\right)^{2}\right) d x=\int_{0}^{3}\left(25 x^{2}-x^{4}\right) d x \\
&=\left(\frac{25 \cdot 3^{3}}{3}-\frac{3^{5}}{5}\right)=\frac{5^{3} \cdot 3^{3}-3^{6}}{15}=\frac{3^{3}(125-27)}{15}=\frac{9(98)}{5}=\frac{882}{5}
\end{aligned}
$$

6. Find the shaded area of the polar region given below

SOLUTION. The area A of the shaded region is

$$
A=2\left(\frac{1}{2} \int_{0}^{\pi / 4} r^{2} d \theta+\frac{1}{2} \int_{\pi / 4}^{\pi / 2} r^{2} d \theta\right)=\int_{0}^{\pi / 4} 1 d \theta+\int_{\pi / 4}^{\pi / 2}(1+\cos 2 \theta)^{2} d \theta
$$

since the curves interesect at $\theta=\pi / 4$ because

$$
1=r=1+\cos 2 \theta \text { implies } \cos 2 \theta=0 \text { or } \theta=\frac{\pi}{4} .
$$

So we get

$$
\begin{aligned}
A & =\frac{\pi}{4}+\int_{\pi / 4}^{\pi / 2}\left(1+2 \cos 2 \theta+\cos ^{2} 2 \theta\right) d \theta \\
& =\frac{\pi}{4}+\frac{\pi}{4}+\left.\sin 2 \theta\right|_{\pi / 4} ^{\pi / 2}+\frac{1}{2} \int_{\pi / 4}^{\pi / 2}(1+\cos 4 \theta) d \theta \\
& =\frac{\pi}{2}-1+\frac{\pi}{8}+\left.\frac{\sin 4 \theta}{8}\right|_{\pi / 4} ^{\pi / 2}=\frac{5}{8} \pi-1
\end{aligned}
$$

