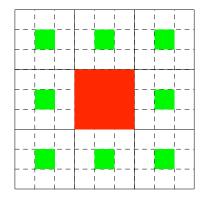
Solutions of the Calculus Contest

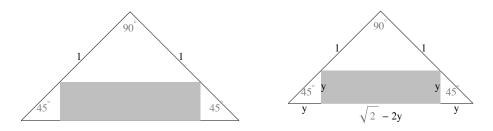
Mathematics Department, University of Cincinnati, May 13, 2008

1. The middle third $\left[\frac{1}{3}, \frac{2}{3}\right] \times \left[\frac{1}{3}, \frac{2}{3}\right]$ is removed from the unit square $[1, 0] \times [1, 0]$ creating 8 new squares. The middle third is removed from each of the 8 new squares creating 64 new squares. This process is continued ad infinitum. How much area has been removed?



SOLUTION. The central square S_1 has area $A_1 = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$. Removal of the center square S_1 creates 8 smaller squares whose central squares S_2 has area $\frac{1}{9} \cdot \frac{1}{9}$ for a total area of $A_2 = \frac{8}{9^2}$. Removal of the squares S_2 creates 8.8 central squares S_3 whose area is $\frac{1}{27} \cdot \frac{1}{27}$ for a total area $A_3 = \frac{8^2}{9^3}$. So the area being removed is $\sum A_i = \sum_{i=1}^{\infty} \frac{8^{i-1}}{9^i} = \frac{1}{9} \sum_{i=0}^{\infty} \frac{8^i}{9^i} = \frac{1}{9} \left(\frac{1}{1-8/9}\right) = 1$.

2. Find the dimensions of the rectangle with maximal area in the $45^{\circ} - 45^{\circ} - 90^{\circ}$ right triangle with legs of length 1.



SOLUTION. The area is $A = y(\sqrt{2} - 2y)$. The maximal area occurs for y with $A' = \sqrt{2} - 4y = 0$ or $y = \sqrt{2}/4$. Thus, the dimensions of the rectangle with maximal area are $\sqrt{2} - 2(\frac{\sqrt{2}}{4}) = \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{4}$ $A = \frac{\sqrt{2}}{2}(\frac{\sqrt{2}}{4}) = \frac{2}{8} = \frac{1}{4}$

$$A = y \left(\sqrt{2} - 2 y \right)$$

y

 $A' = \sqrt{2} - 4y = 0$ $\sqrt{2} - 2\left(\frac{\sqrt{2}}{4}\right) = \frac{\sqrt{2}}{2} \quad \text{by} \quad \frac{\sqrt{2}}{4} \quad \text{and} \quad \text{the maximal area is}$ $A = \frac{\sqrt{2}}{2}\left(\frac{\sqrt{2}}{4}\right) = \frac{2}{8} = \frac{1}{4}$

3. Evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{x^2 - 6x + 10} dx$.

SOLUTION. The polynomial $x^2 - 6x + 10$ is irreducible (i.e., does not have real roots). We need to complete the square of the denominator to integrate. We get

$$\int_{-\infty}^{\infty} \frac{1}{x^2 - 6x + 10} \, dx = \int_{-\infty}^{\infty} \frac{1}{x^2 - 6x + 9 + 1} \, dx = \int_{-\infty}^{\infty} \frac{1}{(x - 3)^2 + 1} \, dx = \int_{-\infty}^{\infty} \frac{1}{u^2 + 1} \, dx$$
$$= \lim_{a \to -\infty} \lim_{a \to -\infty} \arctan u \Big|_{a}^{b} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi.$$

4. Evaluate
$$\int_0^1 \sqrt{x - x^2} \, dx$$
.

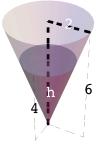
SOLUTION. We have

$$\int_0^1 \sqrt{x - x^2} \, dx = \int_0^1 \sqrt{\frac{1}{4} - \frac{1}{4} + x - x^2} \, dx = \int_0^1 \sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2} \, dx$$

Set $x - \frac{1}{2} = \frac{1}{2}\sin\theta$. At x = 1, $\frac{1}{2}\sin\theta = \frac{1}{2}$ and $\theta = \frac{\pi}{2}$; at x = 0, $\frac{1}{2}\sin\theta = -\frac{1}{2}$ and $\theta = -\frac{\pi}{2}$. Also $d x = \frac{1}{2}\cos\theta d \theta$. Since $\cos\theta$ is positive on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we get

$$\int_0^1 \sqrt{x - x^2} \, dx = \int_{-\pi/2}^{\pi/2} \sqrt{\frac{1}{4} - \frac{1}{4}\sin^2\theta} \, \frac{1}{2}\cos\theta \, d\theta = \frac{1}{4} \int_{-\pi/2}^{\pi/2} \cos^2\theta \, d\theta$$
$$= \frac{1}{4} \int_{-\pi/2}^{\pi/2} \frac{1 - \cos 2\theta}{2} \, d\theta = \frac{\pi}{8}.$$

5. Water is poured into a conical cup at the rate of $\frac{2}{3}$ cubic inches per second. If the cup is 6 inches tall and if the top of the cup has a radius of 2 inches, how fast is the water level rising when the water is 4 inches deep?



SOLUTION. This is a related rate problem. We have that

$$\frac{h}{r} = \frac{6}{2} \text{ or } r = \frac{h}{3}.$$

This means that

$$V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi \left(\frac{h}{3}\right)^2 h = \frac{\pi h^3}{3^3}.$$

Taking the derivative of both sides with respect to t when h(t) = 4 gives

$$\frac{2}{3} \frac{in^3}{s} = V' = \frac{3\pi h^2 h'}{3^3} = \frac{\pi (4)^2 h'}{3^2} in^2$$

so that

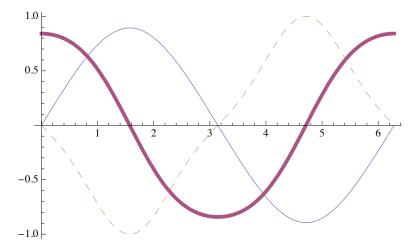
$$h' = \frac{2}{3} \left(\frac{3^2}{4^2 \pi}\right) \frac{in}{sec} = \frac{3}{8 \pi} \frac{in}{sec}$$

6. Find
$$\int \arcsin(3x) dx$$
.

SOLUTION. This requires integration by parts. Let $u = \arcsin 3x$ and dv = dx; then $du = \frac{1}{\sqrt{1 - (3x)^2}} \frac{d}{dx} (3x) dx = \frac{3}{\sqrt{1 - 9x^2}} dx$ and v = x. We get

$$\int \arcsin(3x) \, dx = x \arcsin 3x - \int \frac{3x}{\sqrt{1-9x^2}} \, dx = x \arcsin 3x + \frac{\sqrt{1-9x^2}}{3}$$

7. Consider the graph of f, f', f'' on the axes below.

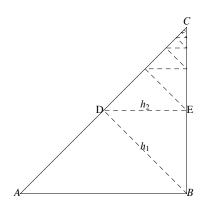


Identify the graphs by the labels **Thick, Thin, Dashed**. Write the graphs in order f, f', f''. Why did you choose this order?

SOLUTION. The Thin graph has a maximum at $x \approx 1.5$ while the Thick graph has a zero at 1.5 and the Dashed graph is negative. So the graphs in order f, f', f'' are **Thin, Thick, Dashed**. Other orders x = 1.5

are not possible: 1) Thin, Dashed, Thick does not work at x = 1.5 since Thin has a max but Dashed is not 0; 2) Dashed, Thick, Thin does not work on [1.5, 3.1] where Dashed is increasing but Thick is negative; 3) Dashed, Thin, Thick does not work on [0, 1.5] where Dashed is decreasing but Thin is positive; 4) Thick, Dashed, Thin does not work on [0, 1.5] where Thick is concave down but Thin is positive; and 5) Thick, Thin, Dashed does not work [1.5, 3.1] where Thick is concave up but Dashed is negative.

8. The right triangle $\triangle ABC$ has legs \overline{AB} and \overline{BC} of length 1 and right angle $\angle ABC$. Draw the altitude h_1 from *B* to the hypotenuse \overline{AC} to form the new right triangle $\triangle BDC$ with right angle $\angle BDC$. Draw the altitude h_2 from D to the hypotenuse \overline{BC} to form a new right triangle $\triangle DEC$ with right angle $\angle DEC$. This is continued ad infinitum. Find $\sum_{i=1}^{\infty} Length(h_i)$.



SOLUTION. Each h_i is the altitude on a isosceles right triangle with leg h_{i-1} with $h_0 = 1$. In fact, the altitudes bisect the right angles at the vertex producing a 45° angle at the base of the new right triangle. This means that

Length
$$(h_i) = Length(h_{i-1}) \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} Length(h_{i-1}).$$

The sum of the lengths is a geometric series, viz.,

$$\begin{split} \sum_{i=1}^{\infty} Length\left(h_{i}\right) &= Length\left(h_{1}\right) + \frac{1}{\sqrt{2}} Length\left(h_{1}\right) + \left(\frac{1}{\sqrt{2}}\right)^{2} Length\left(h_{1}\right) + \dots \\ &= Length\left(h_{1}\right) \left(1 + \frac{1}{\sqrt{2}} + \left(\frac{1}{\sqrt{2}}\right)^{2} + \dots\right) \\ &= \frac{1}{\sqrt{2}} \left(\frac{1}{1 - \left(1/\sqrt{2}\right)}\right) = \frac{1}{\sqrt{2} - 1}. \end{split}$$