Solutions of the Calculus Contest

Mathematics Department, University of Cincinnati, May 13, 2008

1. The middle third $\left[\frac{1}{3}, \frac{2}{3}\right] \times\left[\frac{1}{3}, \frac{2}{3}\right]$ is removed from the unit square $[1,0] \times[1,0]$ creating 8 new squares. The middle third is removed from each of the 8 new squares creating 64 new squares. This process is continued ad infinitum. How much area has been removed?

SOLUTION. The central square S_{l} has area $A_{1}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}$. Removal of the center square S_{l} creates 8 smaller squares whose central squares S_{2} has area $\frac{1}{9} \cdot \frac{1}{9}$ for a total area of $A_{2}=\frac{8}{9^{2}}$. Removal of the squares S_{2} creates 8.8 central squares S_{3} whose area is $\frac{1}{27} \frac{1}{27}$ for a total area $A_{3}=\frac{8^{2}}{9^{3}}$. So the area being removed is $\sum A_{i}=\sum_{i=1}^{\infty} \frac{8^{i-1}}{9^{i}}=\frac{1}{9} \sum_{i=0}^{\infty} \frac{8^{i}}{9^{i}}=\frac{1}{9}\left(\frac{1}{1-8 / 9}\right)=1$.
2. Find the dimensions of the rectangle with maximal area in the $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle with legs of length 1 .

SOLUTION. The area is $A=y(\sqrt{2}-2 y)$. The maximal area occurs for y with $A^{\prime}=\sqrt{2}-4 y=0$ or $y=\sqrt{2} / 4$. Thus, the dimensions of the rectangle with maximal area are
$\sqrt{2}-2\left(\frac{\sqrt{2}}{4}\right)=\frac{\sqrt{2}}{2}$ by $\frac{\sqrt{2}}{4}$ and the maximal area is $A=\frac{\sqrt{2}}{2}\left(\frac{\sqrt{2}}{4}\right)=\frac{2}{8}=\frac{1}{4}$
3. Evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{x^{2}-6 x+10} d x$.

SOLUTION. The polynomial $x^{2}-6 x+10$ is irreducible (i.e., does not have real roots). We need to complete the square of the denominator to integrate. We get

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{1}{x^{2}-6 x+10} d x=\int_{-\infty}^{\infty} \frac{1}{x^{2}-6 x++9+1} d x=\int_{-\infty}^{\infty} \frac{1}{(x-3)^{2}+1} d x=\int_{-\infty}^{\infty} \frac{1}{u^{2}+1} d x \\
=\left.\lim _{\substack{b \rightarrow \infty \\
a \rightarrow-\infty}} \arctan u\right|_{a} ^{b}=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi .
\end{gathered}
$$

4. Evaluate $\int_{0}^{1} \sqrt{x-x^{2}} d x$.

SOLUTION. We have

$$
\int_{0}^{1} \sqrt{x-x^{2}} d x=\int_{0}^{1} \sqrt{\frac{1}{4}-\frac{1}{4}+x-x^{2}} d x=\int_{0}^{1} \sqrt{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}} d x
$$

Set $x-\frac{1}{2}=\frac{1}{2} \sin \theta$. At $x=1, \frac{1}{2} \sin \theta=\frac{1}{2}$ and $\theta=\frac{\pi}{2}$; at $x=0, \frac{1}{2} \sin \theta=-\frac{1}{2}$ and $\theta=-\frac{\pi}{2}$. Also $d x=\frac{1}{2} \cos \theta d \theta$. Since $\cos \theta$ is positive on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we get

$$
\begin{aligned}
\int_{0}^{1} \sqrt{x-x^{2}} d x & =\int_{-\pi / 2}^{\pi / 2} \sqrt{\frac{1}{4}-\frac{1}{4} \sin ^{2} \theta} \frac{1}{2} \cos \theta d \theta=\frac{1}{4} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =\frac{1}{4} \int_{-\pi / 2}^{\pi / 2} \frac{1-\cos 2 \theta}{2} d \theta=\frac{\pi}{8}
\end{aligned}
$$

5. Water is poured into a conical cup at the rate of $\frac{2}{3}$ cubic inches per second. If the cup is 6 inches tall and if the top of the cup has a radius of 2 inches, how fast is the water level rising when the water is 4 inches deep?

SOLUTION. This is a related rate problem. We have that

$$
\frac{h}{r}=\frac{6}{2} \text { or } r=\frac{h}{3} .
$$

This means that

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h}{3}\right)^{2} h=\frac{\pi h^{3}}{3^{3}} .
$$

Taking the derivative of both sides with respect to t when $h(t)=4$ gives

$$
\frac{2}{3} \frac{i n^{3}}{s}=V^{\prime}=\frac{3 \pi h^{2} h^{\prime}}{3^{3}}=\frac{\pi(4)^{2} h^{\prime}}{3^{2}} i n^{2}
$$

so that

$$
h^{\prime}=\frac{2}{3}\left(\frac{3^{2}}{4^{2} \pi}\right) \frac{i n}{\sec }=\frac{3}{8 \pi} \frac{i n}{\sec } .
$$

6. Find $\int \arcsin (3 x) d x$.

SOLUTION. This requires integration by parts. Let $u=\arcsin 3 x$ and $d v=d x$; then $d u=\frac{1}{\sqrt{1-(3 x)^{2}}} \frac{d}{d x}(3 x) d x=\frac{3}{\sqrt{1-9 x^{2}}} d x$ and $v=x$. We get

$$
\int \arcsin (3 x) d x=x \arcsin 3 x-\int \frac{3 x}{\sqrt{1-9 x^{2}}} d x=x \arcsin 3 x+\frac{\sqrt{1-9 x^{2}}}{3} .
$$

7. Consider the graph of $f, f^{\prime}, f^{\prime \prime}$ on the axes below.

Identify the graphs by the labels Thick, Thin, Dashed. Write the graphs in order $f, f^{\prime}, f^{\prime \prime}$. Why did you choose this order?

SOLUTION. The Thin graph has a maximum at $x \approx 1.5$ while the Thick graph has a zero at 1.5 and the Dashed graph is negative. So the graphs in order $f, f^{\prime}, f^{\prime \prime}$ are Thin, Thick, Dashed. Other orders
are not possible: 1) Thin, Dashed, Thick does not work at $x=1.5$ since Thin has a max but Dashed is not $0 ; 2$) Dashed, Thick, Thin does not work on [1.5,3.1] where Dashed is increasing but Thick is negative; 3) Dashed, Thin, Thick does not work on [0, 1.5] where Dashed is decreasing but Thin is positive; 4) Thick, Dashed, Thin does not work on [0, 1.5] where Thick is concave down but Thin is positive; and 5) Thick, Thin, Dashed does not work [1.5, 3.1] where Thick is concave up but Dashed is negative.
8. The right triangle $\triangle \mathrm{ABC}$ has legs $\overline{A B}$ and $\overline{B C}$ of length 1 and right angle $\angle \mathrm{ABC}$. Draw the altitude h_{1} from B to the hypotenuse $\overline{A C}$ to form the new right triangle $\triangle \mathrm{BDC}$ with right angle $\angle \mathrm{BDC}$. Draw the altitude h_{2} from D to the hypotenuse $\overline{B C}$ to form a new right triangle $\triangle \mathrm{DEC}$ with right angle $\angle D E C$. This is continued ad infinitum. Find $\sum_{i=1}^{\infty}$ Length $\left(h_{i}\right)$.

SOLUTION. Each h_{i} is the altitude on a isosceles right triangle with leg h_{i-1} with $h_{0}=1$. In fact, the altitudes bisect the right angles at the vertex producing a 45° angle at the base of the new right triangle. This means that

$$
\text { Length }\left(h_{i}\right)=\operatorname{Length}\left(h_{i-1}\right) \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \operatorname{Length}\left(h_{i-1}\right)
$$

The sum of the lengths is a geometric series, viz.,

$$
\begin{aligned}
\sum_{i=1}^{\infty} \operatorname{Length}\left(h_{i}\right) & =\operatorname{Length}\left(h_{1}\right)+\frac{1}{\sqrt{2}} \text { Length }\left(h_{1}\right)+\left(\frac{1}{\sqrt{2}}\right)^{2} \operatorname{Length}\left(h_{1}\right)+\ldots \\
& =\operatorname{Length}\left(h_{1}\right)\left(1+\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\ldots\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{1}{1-(1 / \sqrt{2})}\right)=\frac{1}{\sqrt{2}-1} .
\end{aligned}
$$

