Universty of Cincinnati
 Solutions
 Calculus Contest 2009

1. Find the area of the snowflake. It starts with an equilateral triangle of side length s. Each side is divided into 3 equal parts and an equilateral triangle with base equal to the middle third of each side is constructed pointing out on the middle third. Then the 2 outward sides of each of the 3 new triangles is divided into 3 equal parts and an equilateral triangle is placed on the two outer sides in the same way. This continued infinitely.

SOLUTION. The area of an equilateral triangle of side s is $A=\frac{1}{2} s^{2} \sin \frac{\pi}{3}=\frac{\sqrt{3}}{4} s^{2}$. In our snowflake, we have one equilateral triangle of side s, 3 equilateral triangles of side $\frac{s}{3}, 2 \cdot 3$ equilateral triangles of side $\frac{1}{3}\left(\frac{s}{3}\right)=\frac{s}{3^{2}}, 2 \cdot 2 \cdot 3$ equilateral triangles of side $\frac{s}{3^{3}}$, etc. So we need the area

$$
\begin{aligned}
A & =\frac{\sqrt{3}}{4}\left(s^{2}+3\left(\frac{s}{3}\right)^{2}+2 \cdot 3\left(\frac{s}{3^{2}}\right)^{2}+2^{2} \cdot 3\left(\frac{s}{3^{3}}\right)^{2}+\ldots\right) \\
& =\frac{\sqrt{3}}{4} s^{2}\left(1+\frac{1}{3}+\frac{2}{3^{3}}+\frac{2^{2}}{3^{5}}+\ldots\right)= \\
& =\frac{\sqrt{3}}{4} s^{2}\left(1+\frac{1}{3}\left(1+\frac{2}{9}+\left(\frac{2}{9}\right)^{2}+\ldots\right)=\frac{\sqrt{3}}{4} s^{2}\left(1+\frac{1}{3}\left(\frac{1}{1-2 / 9}\right)\right)=\frac{5 \sqrt{3}}{14} s^{2} .\right.
\end{aligned}
$$

2. Calculate $\int_{0}^{\pi / 2} \sqrt{1+\sin x} d x$. HINT: $\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1$.

SOLUTION. We have

$$
\begin{array}{rlrl}
\int_{0}^{\pi / 2} \sqrt{1+\sin x} d x & =\int_{0}^{\pi / 2} \sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}} d x & & \left(\operatorname{since} \sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}\right) \\
& =\int_{0}^{\pi / 2}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right) d x & & \left(\text { since } \sin \frac{x}{2}+\cos \frac{x}{2} \geq 0 \text { for } 0 \leq x \leq \pi / 2\right) \\
& =\left.2\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)\right|_{0} ^{\pi / 2}=2 . &
\end{array}
$$

3. Let $f(x)=(x-2)^{2}+1$ and $g(x)=x-1$ on $[1,3]$. Find the volume obtained by

a. Rotating the area between the curves around the y-axis.

SOLUTION. We need to find where the curves intersect. We have

$$
(x-2)^{2}+1-(x-1)=x^{2}-5 x+6=(x-3)(x-2)=0
$$

SOLUTION ROTATE ABOUT Y AXIS.

$$
\begin{aligned}
& \int_{1}^{2} 2 \pi x\left(x^{2}-5 x+6\right) d x-\int_{2}^{3} 2 \pi x\left(x^{2}-5 x+6\right) d x \\
& =2 \pi\left(\int_{1}^{2}\left(x^{3}-5 x^{2}+6 x\right) d x-\int_{2}^{3}\left(x^{3}-5 x^{2}+6 x\right) d x\right) \\
& =2 \pi\left(\left.\left(\frac{x^{4}}{4}-\frac{5}{3} x^{3}+3 x^{2}\right)\right|_{1} ^{2}-\left.\left(\frac{x^{4}}{4}-\frac{5}{3} x^{3}+3 x^{2}\right)\right|_{2} ^{3}\right) \\
& =2 \pi\left(2\left(\frac{2^{4}}{4}-\frac{5}{3} 2^{3}+3 \cdot 2^{2}\right)-\left(\left(\frac{1^{4}}{4}-\frac{5}{3} 1^{3}+3 \cdot 1^{2}\right)+\left(\frac{3^{4}}{4}-\frac{5}{3} 3^{3}+3 \cdot 3^{2}\right)\right)\right. \\
& =3 \pi
\end{aligned}
$$

b. Find the volume obtained by rotating the area between the curves about the line $y=-1$.

SOLUTION ROTATE ABOUT Line $\mathrm{y}=-1$.
Volume between [1, 2]

$$
\begin{aligned}
& V_{1}=\int_{1}^{2} \pi\left((x-2)^{\wedge} 2+1+1\right)^{2} d x-\int_{1}^{2} \pi(x-1+1)^{2} d x \\
& =\pi \int_{1}^{2}\left(\left(x^{2}-4 x+6\right)^{2}-x^{2}\right) d x \\
& =\pi \int_{1}^{2}\left(x^{4}-8 x^{3}+27 x^{2}-48 x+36\right) d x \\
& =\left.\pi\left(\frac{x^{5}}{5}-2 x^{4}+9 x^{3}-24 x^{2}+36 x\right)\right|_{1} ^{2} \\
& =\pi\left(\left(\frac{32}{5}-32+72-96+72\right)-\left(\frac{1^{5}}{5}-2+9-24+36\right)\right) \\
& =\pi\left(\frac{31}{5}-3\right)=\frac{16}{5} \pi
\end{aligned}
$$

4. Find a polynomial $p(x)$ such that $x p^{\prime \prime}(x)+p(x) \equiv x^{2}+1$.

SOLUTION. The highest degree for a test polynomial $p(x)$ is 2 . Any other polynomial with highest power x^{n} would give a left side of the equation a nonzero term involving x^{n}. So we let $p(x)=a x^{2}+b x+c$ be the test polynomial. Then we get

$$
2 a x+a x^{2}+b x+c=a x^{2}+(2 a+b) x+c=x^{2}+1 .
$$

Identitying coefficients with like degree on both sides give the linear equations $a=1,2 a+b=0, c=1$. This means that $b=-2$ and the polynomial $p(x)=x^{2}-2 x+1$.
5. Let $a>0$.
a) Show that $x^{a}>2 \ln x$ for all x sufficiently large. HINT: $\lim _{x \rightarrow \infty} \frac{x^{a}}{\ln x}=\infty$.

SOLUTION. We have that
$\lim _{x \rightarrow \infty} \frac{x^{a}}{\ln x} \stackrel{\infty / \infty}{=} \lim _{x \rightarrow \infty} \frac{a x^{a-1}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} a x^{a}=\infty$.
by l'Hôpital's rule. This means that there is an N such that $a>N$ implies $\frac{x^{a}}{\ln x}>2$ or $a>N$ implies $x^{a}>2 \ln x$.
b) Show that the integral $\int_{1}^{\infty} e^{-x^{2}} d x$ converges.

SOLUTION. For $x \geq 1, x^{2} \geq x$ and $-x^{2} \leq-x$. So we have that $e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$. This means that

$$
\int_{1}^{\infty} e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} e^{-x^{2}} d x \leq \lim _{b \rightarrow \infty} \int_{1}^{b} e^{-x} d x=\frac{1}{e}<\infty
$$

To use the hint in part a), we have that $2 \ln x<x^{2}$ for x sufficiently large, say $x>N$. So we get that $-x^{2}<-2 \ln x$ for x large and $e^{-x^{2}}<e^{-2 \ln x}=x^{-2}$ for x large. This means that

$$
\int_{N}^{\infty} e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \int_{N}^{b} e^{-x^{2}} d x \leq \lim _{b \rightarrow \infty} \int_{N}^{b} x^{-2} d x=\frac{1}{N}<\infty
$$

and x converges.
6. If $y=x^{3}+x$ and $u=y^{2}-1$, find $\frac{d x}{d u}$.

SOLUTION. Using the chain rule, we get

$$
\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dy}} \frac{\mathrm{dy}}{\mathrm{dx}}=2 y\left(3 x^{2}+1\right)=2\left(x^{3}+x\right)\left(3 x^{2}+1\right)
$$

and

$$
\frac{\mathrm{dx}}{\mathrm{du}}=\frac{1}{\mathrm{du} / \mathrm{dx}}=\frac{1}{2\left(x^{3}+x\right)\left(3 x^{2}+1\right)} .
$$

7. Evaluate $\int_{2}^{\infty} \frac{d t}{t(\ln t)^{3}}$.

SOLUTION. Using the substitution $u=\ln t$, we get

$$
\int_{2}^{\infty} \frac{d t}{t(\ln t)^{3}}=\int_{\ln 2}^{\infty} \frac{d u}{u^{3}}=\lim _{b \rightarrow \infty}-\left.\frac{1}{2} u^{-2}\right|_{\ln 2} ^{b}=\frac{1}{2(\ln 2)^{2}} .
$$

