
Calculus Contest 2010

1. Given a square S and new square S£  is formed by connecting the consecutive midpoints of S.  Starting with the unit
square S with vertices H0, 0L, H1, 0L, H1, 1L, H0, 1L,  new squares S£, HS£L£ = S″, S£££, … are formed.   What  is  the sum of the
perimeters of all the squares?

SOLUTION.  If s is the length of the side of the square, then the inscribed square has side of length s
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2. Approximate the integral Ÿ0
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SOLUTION.  The exponential has the Taylor expansion
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Since the solution series is an alternating series, the first omitted term can serve as the error term.  We have that
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º 0.4613 or .4612 is a good approximation.

3. Find the shaded area in the polar diagram below



SOLUTION.  The area of the inner loop is 
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while the area of the outer loop is
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SOLUTION.  Seting x = sin u, we get
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5. Find the volume of the solid whose base is the triangle bounded by the lines y = x, y = 0, x = 3 and whose cross
sections perpendicular to the x-axis are semicircles.

SOLUTION.  The volume is

V = Ÿ0
3AHxL „ x

where  AHxL  is  the  cross  sectional  area  perpendicular  to  the  x-axis  at  x.   Here  AHxL  is  half  a  disk  with  diameter  x.  So
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6. Find the equation of the tangent line to the lemniscate 2 Ix2 + y2M2 = 25 Ix2 - y2M at (3, 1).

SOLUTION.  We get the derivative by implicit differentiation:

   4 Ix2 + y2M H2 x + 2 y y£L = 25 H2 x - 2 y y£L.

Substituting x = 3 and y = 1, we get 

4 H9 + 1L H6 + 2 y£L = 25 H6 - 2 y£L or 80 y£ + 50 y£ = -240 + 150 or y£ = - 9
13

.  The equation of the tangent line is

   -9
13

Hx - 3L = y - 1 or 9 x + 13 y = 40

7. Use vectors methods to find the intersection of the two dashed medians of the triangle below.  Assume O is the orgin
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SOLUTION.  The median from P has the direction vector  d1 =
1
2
Q - P  and the median from Q has the direction vector

d2 = 1
2
P - Q.  The median lines have parametric equations s d1 + P and t d2 + Q.  So we need s and t with
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Since P and Q are not parallel, we get 1
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t + s = 1.  The simultaneous equations  
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have the solutions 3 t = 2 or t = 2 ê3 and similarly s = 2 ê3.  Either of these is sufficient to get the point of intersetion
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