Calculus Contest 2010

1. Given a square S and new square S^{\prime} is formed by connecting the consecutive midpoints of S . Starting with the unit square S with vertices $(0,0),(1,0),(1,1),(0,1)$, new squares $S^{\prime},\left(S^{\prime}\right)^{\prime}=S^{\prime \prime}, S^{\prime \prime \prime}, \ldots$ are formed. What is the sum of the perimeters of all the squares?

SOLUTION. If s is the length of the side of the square, then the inscribed square has side of length $\frac{s}{2} \sqrt{2}$. So we need to find

$$
4+4\left(\frac{\sqrt{2}}{2}\right)+4\left(\frac{\sqrt{2}}{2}\right)^{2}+\ldots=\frac{4}{1-\frac{\sqrt{2}}{2}}=\frac{8}{2-\sqrt{2}}
$$

2. Approximate the integral $\int_{0}^{1 / 2} e^{-t^{2}} d t$ to 4 decimal places.

SOLUTION. The exponential has the Taylor expansion

$$
\boldsymbol{e}^{t}=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\frac{t^{4}}{4!} \cdots
$$

and

$$
e^{-t^{2}}=1-t^{2}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\frac{t^{8}}{4!}+\ldots
$$

with

$$
\int_{0}^{1 / 2} e^{-t^{2}} d t=\left.\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5 \cdot 2!}-\frac{t^{7}}{7 \cdot 3!}+\frac{t^{9}}{9 \cdot 4!} \ldots\right)\right|_{0} ^{1 / 2}=\frac{1}{2}-\frac{1}{3}\left(\frac{1}{2}\right)^{3}+\frac{1}{5 \cdot 2!}\left(\frac{1}{2}\right)^{5}-\frac{1}{7 \cdot 3!}\left(\frac{1}{2}\right)^{7}+\frac{1}{9 \cdot 4!}\left(\frac{1}{2}\right)^{9}+\ldots
$$

Since the solution series is an alternating series, the first omitted term can serve as the error term. We have that

$$
\frac{1}{5 \cdot 2!}\left(\frac{1}{2}\right)^{5}=\frac{1}{10} \cdot \frac{1}{32}=\frac{1}{320}>.0001
$$

$\frac{1}{7 \cdot 3!}\left(\frac{1}{2}\right)^{7}=\frac{1}{42} \cdot \frac{1}{128}>\frac{1}{50} \cdot \frac{1}{200}=\frac{1}{10000}=.0001$
$\frac{1}{9 \cdot 4!}\left(\frac{1}{2}\right)^{9}=\frac{1}{9} \cdot \frac{1}{24} \cdot \frac{1}{512}<\frac{1}{10000}=.0001$.
So $\frac{1}{2}-\frac{1}{3}\left(\frac{1}{2}\right)^{3}+\frac{1}{5 \cdot 2!}\left(\frac{1}{2}\right)^{5}-\frac{1}{7 \cdot 3!}\left(\frac{1}{2}\right)^{7}=\frac{4133}{8960} \approx 0.4613$ or .4612 is a good approximation.
3. Find the shaded area in the polar diagram below

SOLUTION. The area of the inner loop is

$$
\begin{aligned}
A_{\text {in }}= & \frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos \theta-1)^{2} d \theta \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left(4\left(\frac{1+\cos 2 \theta}{2}\right)-4 \cos \theta+1\right) d \theta \\
& =\left.\frac{1}{2}(3 \theta+\sin 2 \theta-4 \sin \theta)\right|_{-\pi / 3} ^{\pi / 3}=\frac{1}{2}\left(2 \pi+2\left(\frac{\sqrt{3}}{2}\right)-4 \sqrt{3}\right)=\frac{1}{2}(2 \pi-3 \sqrt{3})
\end{aligned}
$$

while the area of the outer loop is

$$
\begin{aligned}
A_{\mathrm{out}}= & \frac{1}{2} \int_{-2 \pi / 3}^{2 \pi / 3}(2 \cos \theta-1)^{2} d \theta \\
& =\left.\frac{1}{2}(3 \theta+\sin 2 \theta-4 \sin \theta)\right|_{-2 \pi / 3} ^{2 \pi / 3} \\
& =\frac{1}{2}(4 \pi-\sqrt{3}-4 \sqrt{3})
\end{aligned}
$$

and the area is

$$
A_{\text {out }}-A_{\text {in }}=\frac{1}{2}(4 \pi-5 \sqrt{3})-\frac{1}{2}(2 \pi-3 \sqrt{3})=\pi-\sqrt{3} .
$$

4. Find $\int \frac{d x}{x^{2} \sqrt{1-x^{2}}}$.

SOLUTION. Seting $x=\sin u$, we get

$$
\int \frac{d x}{x^{2} \sqrt{1-x^{2}}}=\int \frac{d \sin u}{\sin ^{2} u \sqrt{1-\sin ^{2} u}}=\int \frac{\cos u d u}{\cos u \sin ^{2} u}=\int \csc ^{2} u d u=-\cot u+C=-\frac{\sqrt{1-x^{2}}}{x}+C
$$

Using the triangle below we get that $-\cot u=-\frac{\text { adjacent }}{\text { opposite }}=-\frac{\sqrt{1-x^{2}}}{x}$

5. Find the volume of the solid whose base is the triangle bounded by the lines $y=x, y=0, x=3$ and whose cross sections perpendicular to the x-axis are semicircles.

SOLUTION. The volume is

$$
V=\int_{0}^{3} A(x) d x
$$

where $A(x)$ is the cross sectional area perpendicular to the x -axis at x. Here $A(x)$ is half a disk with diameter x. So $A(x)=\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}=\frac{\pi x^{2}}{8}$. So the volume is

$$
V=\left.\frac{\pi x^{3}}{24}\right|_{0} ^{3}=\frac{9}{8} \pi
$$

6. Find the equation of the tangent line to the lemniscate $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at $(3,1)$.

SOLUTION. We get the derivative by implicit differentiation:

$$
4\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=25\left(2 x-2 y y^{\prime}\right) .
$$

Substituting $x=3$ and $y=1$, we get

$$
\begin{gathered}
4(9+1)\left(6+2 y^{\prime}\right)=25\left(6-2 y^{\prime}\right) \text { or } 80 y^{\prime}+50 y^{\prime}=-240+150 \text { or } y^{\prime}=-\frac{9}{13} \text {. The equation of the tangent line is } \\
\frac{-9}{13}(x-3)=y-1 \text { or } 9 x+13 y=40
\end{gathered}
$$

7. Use vectors methods to find the intersection of the two dashed medians of the triangle below. Assume O is the orgin

SOLUTION. The median from P has the direction vector $d_{1}=\frac{1}{2} Q-P$ and the median from Q has the direction vector $d_{2}=\frac{1}{2} P-Q$. The median lines have parametric equations $s d_{1}+P$ and $t d_{2}+Q$. So we need s and t with

$$
s\left(\frac{1}{2} Q-P\right)+P=s d_{1}+P=t d_{2}+Q=t\left(\frac{1}{2} P-Q\right)+Q
$$

or

$$
\left(\frac{1}{2} s+t\right) Q-\left(\frac{1}{2} t+s\right) P=Q-P
$$

Since P and Q are not parallel, we get $\frac{1}{2} s+t=1$ and $\frac{1}{2} t+s=1$. The simultaneous equations

$$
\begin{aligned}
s+2 t & =2 \\
2 s+t & =2
\end{aligned}
$$

have the solutions $3 t=2$ or $t=2 / 3$ and similarly $s=2 / 3$. Either of these is sufficient to get the point of intersetion

$$
\text { Intersection }=s\left(\frac{1}{2} Q-P\right)+\left.P\right|_{s=2 / 3}=\frac{1}{3} Q+\frac{1}{3} P
$$

or

$$
\text { Intersection }=t\left(\frac{1}{2} P-Q\right)+\left.Q\right|_{t=2 / 3}=\frac{1}{3} Q+\frac{1}{3} P
$$

