Name:
M\#:_ Instructor: \qquad
Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1. Suppose that $f^{\prime \prime}$ is continuous on $[0, \pi]$ and that

$$
\int_{0}^{\pi}\left[f(x)+f^{\prime \prime}(x)\right] \sin x d x=2 .
$$

Given that $f(\pi)=3$, compute $f(0)$.
2. Let $A(t)$ be the area under the curve $y=\sin \left(x^{2}\right), 0 \leq x \leq t$. Let $B(t)$ be the area of the triangle with the vertices $(0,0),\left(t, \sin \left(t^{2}\right)\right)$, and $(t, 0)$. Find $\lim _{t \rightarrow 0^{+}} \frac{A(t)}{B(t)}$.
3. A right triangle whose three sides have lengths 3,4 , and 5 ft is rotated about its hypotenuse. Compute the area of the resulting surface of revolution.
4. Let $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t$ for $x>0$. Find a formula for $f(x)+f\left(\frac{1}{x}\right)$ that does not involve integrals.
5. Find the area of the region enclosed by the polar curve $r(\theta)=(1+\sin \theta)^{1 / 4}, 0 \leq \theta \leq 2 \pi$. (Hint for your integral: $1=\sin ^{2}(\theta / 2)+\cos ^{2}(\theta / 2)$.)

6. (a) Find the Maclaurin series for $\cos ^{2}(x)$ and state its radius of convergence. (Hint: no need to square a power series.)
(b) Use the fact that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \quad \text { and } \quad \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} d x=\frac{(2 n-1)!}{2^{2 n-1}(n-1)!} \sqrt{\pi}, n \geq 1
$$

together with your result for part (a), to show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \cos ^{2}(x) d x=\frac{(1+e) \sqrt{\pi}}{2 e}
$$

7. Let f be a continuous function on the interval $[0,1]$ such that $\int_{0}^{1} f(t) d t=0$. Show that

$$
\int_{0}^{1} e^{a f(t)} d t \geq 1
$$

for any real number a.
(Hint: treat the left-hand side of this inequality as a function of a and examine its derivative(s), in particular at zero. Assume that you can differentiate under the integral sign.)

