Name:
M\#:
Instructor: \qquad
Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1. Suppose that $f^{\prime \prime}$ is continuous on $[0, \pi]$ and that

$$
\int_{0}^{\pi}\left[f(x)+f^{\prime \prime}(x)\right] \sin x d x=2
$$

Given that $f(\pi)=3$, compute $f(0)$.

Solution: Since $f^{\prime \prime}$ is continuous, so are f and f^{\prime}, and we can integrate by parts:

$$
\int_{0}^{\pi} f(x) \sin x d x=-\left.f(x) \cos x\right|_{0} ^{\pi}+\int_{0}^{\pi} f^{\prime}(x) \cos x d x=f(\pi)+f(0)+\int_{0}^{\pi} f^{\prime}(x) \cos x d x
$$

and

$$
\int_{0}^{\pi} f^{\prime \prime}(x) \sin x d x=\left.f^{\prime}(x) \sin x\right|_{0} ^{\pi}-\int_{0}^{\pi} f^{\prime}(x) \cos x d x=-\int_{0}^{\pi} f^{\prime}(x) \cos x d x
$$

Putting the two integrals together gives

$$
\int_{0}^{\pi}\left[f(x)+f^{\prime \prime}(x)\right] \sin x d x=f(\pi)+f(0)=2
$$

Since $f(\pi)=3$, we conclude that $f(0)=-1$.
2. Let $A(t)$ be the area under the curve $y=\sin \left(x^{2}\right), 0 \leq x \leq t$. Let $B(t)$ be the area of the triangle with the vertices $(0,0),\left(t, \sin \left(t^{2}\right)\right)$, and $(t, 0)$. Find $\lim _{t \rightarrow 0^{+}} \frac{A(t)}{B(t)}$.

Solution: We have

$$
A(t)=\int_{0}^{t} \sin \left(x^{2}\right) d x, \quad B(t)=\frac{1}{2} t \sin \left(t^{2}\right)
$$

Observe that $\lim _{t \rightarrow 0^{+}} A(t)=0$ and $\lim _{t \rightarrow 0^{+}} B(t)=0$. Therefore, by L'Hôspital's Rule and the Fundamental Theorem of Calculus,

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} \frac{A(t)}{B(t)} & =\lim _{t \rightarrow 0^{+}} \frac{A^{\prime}(t)}{B^{\prime}(t)}=\lim _{t \rightarrow 0^{+}} \frac{\sin \left(t^{2}\right)}{\frac{1}{2} \sin \left(t^{2}\right)+t^{2} \cos \left(t^{2}\right)} \\
& =\lim _{t \rightarrow 0^{+}} \frac{\frac{\sin \left(t^{2}\right)}{t^{2}}}{\frac{1}{2} \frac{\sin \left(t^{2}\right)}{t^{2}}+\cos \left(t^{2}\right)}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}
\end{aligned}
$$

3. A right triangle whose three sides have lengths 3,4 , and 5 ft is rotated about its hypotenuse. Compute the area of the resulting surface of revolution.

Solution: Position the triangle on a coordinate system so that its hypotenuse $A B$ is along the x-axis, with $A=(0,0)$ and $B=(5,0)$ (see the figure). We first need to determine the coordinates of the point C, that is the lengths $|A D|$ and $|C D|$.

We have

$$
\frac{|A D|}{|A C|}=\frac{|A C|}{|A B|}=\frac{|C D|}{|C B|} \Longrightarrow|A D|=\frac{|A C|^{2}}{|A B|}=\frac{16}{5}, \quad|C D|=\frac{|A C||C B|}{|A B|}=\frac{12}{5} .
$$

Therefore, the slope of the line through A and C is equal to $\frac{|C D|}{|A D|}=\frac{12 / 5}{16 / 5}=\frac{3}{4}$ and the line itself is given by $y=\frac{3}{4} x$. Similarly, the slope of the line through B and C is equal to $-\frac{|C D|}{|D B|}=-\frac{12 / 5}{9 / 15}=-\frac{4}{3}$ and the line itself is $y=-\frac{4}{3}(x-5)$. Using the formula for the area of the surface of revolution, we obtain

$$
\begin{aligned}
S & =2 \pi \int_{0}^{16 / 5} \frac{3}{4} x \sqrt{1+\left(\frac{3}{4}\right)^{2}} d x+2 \pi \int_{16 / 5}^{5}\left(-\frac{4}{3}(x-5)\right) \sqrt{1+\left(\frac{4}{3}\right)^{2}} d x \\
& =2 \pi\left[\frac{15}{16} \int_{0}^{16 / 5} x d x-\frac{20}{9} \int_{16 / 5}^{5}(x-5) d x\right] \\
& =2 \pi\left[\frac{15}{16} \cdot \frac{1}{2} \cdot\left(\frac{16}{5}\right)^{2}+\frac{20}{9} \cdot \frac{1}{2} \cdot\left(\frac{9}{5}\right)^{2}\right]=\frac{84}{5} \pi
\end{aligned}
$$

4. Let $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t$ for $x>0$. Find a formula for $f(x)+f\left(\frac{1}{x}\right)$ that does not involve integrals.

Solution:

Solution 1: Using the substitution $z=1 / x$, we have

$$
f(1 / x)=\int_{1}^{1 / x} \frac{\ln t}{1+t} d t=\int_{1}^{x} \frac{-\ln z}{1+1 / z}\left(-\frac{1}{z^{2}}\right) d z=\int_{1}^{x} \frac{\ln z}{1+z}\left(\frac{1}{z}\right) d z
$$

and so

$$
\begin{aligned}
f(x)+f(1 / x) & =\int_{1}^{x} \frac{\ln t}{1+t} d t+\int_{1}^{x} \frac{\ln t}{1+t}\left(\frac{1}{t}\right) d t \\
& =\int_{1}^{x} \frac{\ln t}{1+t}\left(1+\frac{1}{t}\right) d t=\int_{1}^{x} \frac{\ln t}{t} d t=\frac{1}{2} \ln ^{2} x
\end{aligned}
$$

Solution 2: This is a reformulation of Solution 1 using the Fundamental Theorem of Calculus:

$$
[f(x)+f(1 / x)]^{\prime}=f^{\prime}(x)-f^{\prime}(1 / x) \frac{1}{x^{2}}=\frac{\ln x}{1+x}-\frac{\ln (1 / x)}{1+(1 / x)} \frac{1}{x^{2}}=\frac{\ln x}{x},
$$

which means that

$$
f(x)+f(1 / x)=\int \frac{\ln x}{x} d x=\frac{1}{2} \ln ^{2} x+C .
$$

Setting $x=1$ gives $2 f(1)=C$. By the definition of f, we have $f(1)=0$, so $C=0$ and

$$
f(x)+f(1 / x)=\frac{1}{2} \ln ^{2} x
$$

5. Find the area of the region enclosed by the polar curve $r(\theta)=(1+\sin \theta)^{1 / 4}, 0 \leq \theta \leq 2 \pi$. (Hint for your integral: $1=\sin ^{2}(\theta / 2)+\cos ^{2}(\theta / 2)$.)

Solution: We have $A=\frac{1}{2} \int_{0}^{2 \pi} r^{2}(\theta) d \theta=\frac{1}{2} \int_{0}^{2 \pi}(1+\sin \theta)^{1 / 2} d \theta$.
Now, $1+\sin \theta=\sin ^{2}(\theta / 2)+\cos ^{2}(\theta / 2)+2 \sin (\theta / 2) \cos (\theta / 2)=(\sin (\theta / 2)+\cos (\theta / 2))^{2}$ and so

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{2 \pi}|\sin (\theta / 2)+\cos (\theta / 2)| d \theta \\
& =\int_{0}^{\pi}|\sin t+\cos t| d t=\left.(-\cos t+\sin t)\right|_{0} ^{3 \pi / 4}-\left.(-\cos t+\sin t)\right|_{3 \pi / 4} ^{\pi} \\
& =2 \sqrt{2}
\end{aligned}
$$

6. (a) Find the Maclaurin series for $\cos ^{2}(x)$ and state its radius of convergence. (Hint: no need to square a power series.)

Solution: We have

$$
\cos ^{2} x=\frac{1}{2}(1+\cos (2 x))=\frac{1}{2}\left[1+\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n}}{(2 n)!}\right]=1+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{2^{2 n} x^{2 n}}{(2 n)!}
$$

This series inherits its radius of convergence from the series for $\cos x$, thus the radius is ∞.
(b) Use the fact that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \quad \text { and } \quad \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} d x=\frac{(2 n-1)!}{2^{2 n-1}(n-1)!} \sqrt{\pi}, n \geq 1
$$

together with your result for part (a), to show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \cos ^{2}(x) d x=\frac{(1+e) \sqrt{\pi}}{2 e}
$$

Solution: We can multiply a convergent series by a number, term-by-term:

$$
e^{-x^{2}} \cos ^{2} x=e^{-x^{2}}+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{2^{2 n}}{(2 n)!} x^{2 n} e^{-x^{2}},
$$

and then integrate it term-by-term (within the interval of convergence, which is $(-\infty, \infty)$ in our case):

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-x^{2}} \cos ^{2} x d x & =\int_{-\infty}^{\infty} e^{-x^{2}} d x+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{2^{2 n}}{(2 n)!} \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} d x \\
& =\sqrt{\pi}+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{2^{2 n}}{(2 n)!} \frac{(2 n-1)!}{2^{2 n-1}(n-1)!} \sqrt{\pi} \\
& =\sqrt{\pi}+\frac{\sqrt{\pi}}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}
\end{aligned}
$$

Recall that $e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$, so $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}=e^{-1}-1$. This gives

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \cos ^{2} x d x=\sqrt{\pi}+\frac{\sqrt{\pi}}{2}\left(\frac{1}{e}-1\right)=\frac{(1+e) \sqrt{\pi}}{2 e}
$$

7. Let f be a continuous function on the interval $[0,1]$ such that $\int_{0}^{1} f(t) d t=0$. Show that

$$
\int_{0}^{1} e^{a f(t)} d t \geq 1
$$

for any real number a.
(Hint: treat the left-hand side of this inequality as a function of a and examine its derivative(s), in particular at zero. Assume that you can differentiate under the integral sign.)

$$
\begin{aligned}
& \text { Solution: Let } g(a)=\int_{0}^{1} e^{a f(t)} d t \text {. Then } \\
& \qquad g^{\prime}(a)=\frac{d}{d a} \int_{0}^{1} e^{a f(t)} d t=\int_{0}^{1} \frac{d}{d a}\left(e^{a f(t)}\right) d t=\int_{0}^{1} f(t) e^{a f(t)} d t .
\end{aligned}
$$

Similarly,

$$
g^{\prime \prime}(a)=\int_{0}^{1}[f(t)]^{2} e^{a f(t)} d t
$$

We have

$$
g(0)=\int_{0}^{1} d t=1, \quad g^{\prime}(0)=\int_{0}^{1} f(t) d t=0
$$

Furthermore, since f is continuous on $[0,1]$, we have

$$
g^{\prime \prime}(a)=\int_{0}^{1}[f(t)]^{2} e^{a f(t)} d t>0 \quad \text { for any } a
$$

unless f is identically zero on $[0,1]$. (If f is identically zero on $[0,1]$, the statement to be shown follows trivially since in that case $g(a)=1$ for all a.)
Therefore, by the second derivative test the point $a=1$ is a point of global minimum of g. Since $g(0)=1$, we have $g(a) \geq 1$ for all a, i.e.

$$
\int_{0}^{1} e^{a f(t)} d t \geq 1
$$

as required.
(Alternatively, one can use Taylor's formula:

$$
g(a)=g(0)+g^{\prime}(0) a+\frac{1}{2} g^{\prime \prime}(c) a^{2}=1+\frac{1}{2} g^{\prime \prime}(c) a^{2}
$$

for some c between 0 and a. Since $g^{\prime \prime} \geq 0$, we have $g(a) \geq 1$.)

