
UC Calculus Contest Solutions April 4, 2013

Name: M#: Instructor:

Instructions: This exam has seven problems on seven pages. Show all your work, expressing
yourself in clear and concise manner. Do as many problems as you can, but be advised that a
complete solution to a problem may be worth more than several partial ones. Use the backs of the
exam pages for work, if necessary. No calculators of any kind are allowed.

1. Suppose that f ′′ is continuous on [0, π] and that∫ π

0

[f(x) + f ′′(x)] sinx dx = 2.

Given that f(π) = 3, compute f(0).

Solution: Since f ′′ is continuous, so are f and f ′, and we can integrate by parts:∫ π

0

f(x) sinx dx = −f(x) cosx
∣∣∣π
0
+

∫ π

0

f ′(x) cosx dx = f(π)+f(0)+

∫ π

0

f ′(x) cosx dx

and ∫ π

0

f ′′(x) sinx dx = f ′(x) sinx
∣∣∣π
0
−
∫ π

0

f ′(x) cosx dx = −
∫ π

0

f ′(x) cosx dx.

Putting the two integrals together gives∫ π

0

[f(x) + f ′′(x)] sinx dx = f(π) + f(0) = 2.

Since f(π) = 3, we conclude that f(0) = −1.
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2. Let A(t) be the area under the curve y = sin(x2), 0 ≤ x ≤ t. Let B(t) be the area of the

triangle with the vertices (0, 0), (t, sin(t2)), and (t, 0). Find lim
t→0+

A(t)

B(t)
.

Solution: We have

A(t) =

∫ t

0

sin(x2) dx, B(t) =
1

2
t sin(t2),

Observe that limt→0+ A(t) = 0 and limt→0+ B(t) = 0. Therefore, by L’Hôspital’s Rule
and the Fundamental Theorem of Calculus,

lim
t→0+

A(t)

B(t)
= lim

t→0+

A′(t)

B′(t)
= lim

t→0+

sin(t2)
1
2

sin(t2) + t2 cos(t2)

= lim
t→0+

sin(t2)
t2

1
2
sin(t2)
t2

+ cos(t2)
=

1
1
2

+ 1
=

2

3
.
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3. A right triangle whose three sides have lengths 3, 4, and 5 ft is rotated about its hy-
potenuse. Compute the area of the resulting surface of revolution.

Solution: Position the triangle on a coordinate system so that its hypotenuse AB
is along the x-axis, with A = (0, 0) and B = (5, 0) (see the figure). We first need to
determine the coordinates of the point C, that is the lengths |AD| and |CD|.

We have

|AD|
|AC|

=
|AC|
|AB|

=
|CD|
|CB|

=⇒ |AD| = |AC|
2

|AB|
=

16

5
, |CD| = |AC||CB|

|AB|
=

12

5
.

Therefore, the slope of the line through A and C is equal to |CD|
|AD| = 12/5

16/5
= 3

4
and

the line itself is given by y = 3
4
x. Similarly, the slope of the line through B and C is

equal to − |CD||DB| = −12/5
9/15

= −4
3

and the line itself is y = −4
3
(x− 5). Using the formula

for the area of the surface of revolution, we obtain

S = 2π

∫ 16/5

0

3

4
x

√
1 +

(3

4

)2
dx+ 2π

∫ 5

16/5

(
− 4

3
(x− 5)

)√
1 +

(4

3

)2
dx

= 2π

[
15

16

∫ 16/5

0

x dx− 20

9

∫ 5

16/5

(x− 5) dx

]

= 2π

[
15

16
· 1

2
·
(16

5

)2
+

20

9
· 1

2
·
(9

5

)2]
=

84

5
π.
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4. Let f(x) =

∫ x

1

ln t

1 + t
dt for x > 0. Find a formula for f(x) + f( 1

x
) that does not involve

integrals.

Solution:

Solution 1: Using the substitution z = 1/x, we have

f(1/x) =

∫ 1/x

1

ln t

1 + t
dt =

∫ x

1

− ln z

1 + 1/z

(
− 1

z2

)
dz =

∫ x

1

ln z

1 + z

(1

z

)
dz,

and so

f(x) + f(1/x) =

∫ x

1

ln t

1 + t
dt+

∫ x

1

ln t

1 + t

(1

t

)
dt

=

∫ x

1

ln t

1 + t

(
1 +

1

t

)
dt =

∫ x

1

ln t

t
dt =

1

2
ln2 x.

Solution 2: This is a reformulation of Solution 1 using the Fundamental Theorem of
Calculus:

[f(x) + f(1/x)]′ = f ′(x)− f ′(1/x)
1

x2
=

lnx

1 + x
− ln(1/x)

1 + (1/x)

1

x2
=

lnx

x
,

which means that

f(x) + f(1/x) =

∫
lnx

x
dx =

1

2
ln2 x+ C.

Setting x = 1 gives 2f(1) = C. By the definition of f, we have f(1) = 0, so C = 0
and

f(x) + f(1/x) =
1

2
ln2 x.
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5. Find the area of the region enclosed by the polar curve r(θ) = (1+sin θ)1/4, 0 ≤ θ ≤ 2π.
(Hint for your integral: 1 = sin2(θ/2) + cos2(θ/2).)

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

1.25

1.5

Solution: We have A =
1

2

∫ 2π

0

r2(θ) dθ =
1

2

∫ 2π

0

(1 + sin θ)1/2dθ.

Now, 1 + sin θ = sin2(θ/2) + cos2(θ/2) + 2 sin(θ/2) cos(θ/2) = (sin(θ/2) + cos(θ/2))2

and so

A =
1

2

∫ 2π

0

| sin(θ/2) + cos(θ/2)| dθ

=

∫ π

0

| sin t+ cos t| dt = (− cos t+ sin t)
∣∣∣3π/4
0
− (− cos t+ sin t)

∣∣∣π
3π/4

= 2
√

2.
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6. (a) Find the Maclaurin series for cos2(x) and state its radius of convergence. (Hint: no
need to square a power series.)

Solution: We have

cos2 x =
1

2
(1 + cos(2x)) =

1

2

[
1 +

∞∑
n=0

(−1)n
(2x)2n

(2n)!

]
= 1 +

1

2

∞∑
n=1

(−1)n
22nx2n

(2n)!
.

This series inherits its radius of convergence from the series for cosx, thus the
radius is ∞.

(b) Use the fact that∫ ∞
−∞

e−x
2

dx =
√
π and

∫ ∞
−∞

x2ne−x
2

dx =
(2n− 1)!

22n−1(n− 1)!

√
π, n ≥ 1,

together with your result for part (a), to show that∫ ∞
−∞

e−x
2

cos2(x) dx =
(1 + e)

√
π

2e
.

Solution: We can multiply a convergent series by a number, term-by-term:

e−x
2

cos2 x = e−x
2

+
1

2

∞∑
n=1

(−1)n
22n

(2n)!
x2ne−x

2

,

and then integrate it term-by-term (within the interval of convergence, which is
(−∞,∞) in our case):∫ ∞

−∞
e−x

2

cos2 x dx =

∫ ∞
−∞

e−x
2

dx+
1

2

∞∑
n=1

(−1)n
22n

(2n)!

∫ ∞
−∞

x2n e−x
2

dx

=
√
π +

1

2

∞∑
n=1

(−1)n
22n

(2n)!

(2n− 1)!

22n−1(n− 1)!

√
π

=
√
π +

√
π

2

∞∑
n=1

(−1)n

n!
.

Recall that e−1 =
∞∑
n=0

(−1)n

n!
, so

∞∑
n=1

(−1)n

n!
= e−1 − 1. This gives

∫ ∞
−∞

e−x
2

cos2 x dx =
√
π +

√
π

2

(1

e
− 1
)

=
(1 + e)

√
π

2e
.
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7. Let f be a continuous function on the interval [0, 1] such that

∫ 1

0

f(t) dt = 0. Show that∫ 1

0

eaf(t)dt ≥ 1

for any real number a.

(Hint: treat the left-hand side of this inequality as a function of a and examine its
derivative(s), in particular at zero. Assume that you can differentiate under the integral
sign.)

Solution: Let g(a) =

∫ 1

0

eaf(t)dt. Then

g′(a) =
d

da

∫ 1

0

eaf(t)dt =

∫ 1

0

d

da

(
eaf(t)

)
dt =

∫ 1

0

f(t)eaf(t)dt.

Similarly,

g′′(a) =

∫ 1

0

[f(t)]2eaf(t)dt.

We have

g(0) =

∫ 1

0

dt = 1, g′(0) =

∫ 1

0

f(t) dt = 0.

Furthermore, since f is continuous on [0, 1], we have

g′′(a) =

∫ 1

0

[f(t)]2eaf(t)dt > 0 for any a,

unless f is identically zero on [0, 1]. (If f is identically zero on [0, 1], the statement
to be shown follows trivially since in that case g(a) = 1 for all a.)

Therefore, by the second derivative test the point a = 1 is a point of global minimum
of g. Since g(0) = 1, we have g(a) ≥ 1 for all a, i.e.∫ 1

0

eaf(t)dt ≥ 1,

as required.

(Alternatively, one can use Taylor’s formula:

g(a) = g(0) + g′(0)a+
1

2
g′′(c)a2 = 1 +

1

2
g′′(c)a2,

for some c between 0 and a. Since g′′ ≥ 0, we have g(a) ≥ 1.)
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