UC Calculus Contest

\qquad M\#: \qquad

Instructor:

\qquad
Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1

A right circular cone is inscribed in a sphere of radius R as in Figure 1. Find the maximal possible cone volume. What is the ratio between the sphere volume and the maximal inscribed cone volume?

Figure 1.

One corner of a page of width $a=8$ inches is folded over to just reach the opposite side as indicated in Figure 2. After expressing the length L of the crease in terms the angle θ, find the width x of the part folded over when L is a minimum.

Figure 2.

3

Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that the function
$f(x)=a_{1} \sin (x)+a_{2} \sin (2 x)+\ldots+a_{n} \sin (n x)$
satisfies $|f(x)| \leq|\sin (x)|$, for all real numbers x. Prove that
$\left|a_{1}+2 a_{2}+\ldots+n a_{n}\right| \leq 1$

4
For what values of p does the series $\sum_{n=6}^{\infty}\left(e^{-\frac{1}{n^{2}}}+\frac{1}{n^{2}}-1\right)^{p}$ converge? Fully justify your answer.

5

Show that the limit $\gamma:=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)$ exists, and find an upper and lower bound for γ.

6
Calculate the following integral and check your result by differentiation.

$$
\begin{equation*}
\int(\ln x)^{2} d x \tag{6.1}
\end{equation*}
$$

7

Calculate the following integral and check your result by differentiation.

$$
\begin{equation*}
\int \frac{1}{x^{7}-x} d x \tag{7.1}
\end{equation*}
$$

