UC Calculus Contest

April 3, 2014

 Name:_____
 M#:_____
 Instructor:_____

Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1

A right circular cone is inscribed in a sphere of radius R as in Figure 1. Find the maximal possible cone volume. What is the ratio between the sphere volume and the maximal inscribed cone volume?

Figure 1.

One corner of a page of width a = 8 inches is folded over to just reach the opposite side as indicated in Figure 2. After expressing the length L of the crease in terms the angle θ , find the width x of the part folded over when L is a minimum.

Figure 2.

Suppose that $a_1, a_2,$, a_n are real	l numbers such	that the function
--------------------------	------------------	----------------	-------------------

$f(x) = a_1 \sin(x) + a_2 \sin(2x) + \dots + a_n \sin(nx)$	(3.1)
satisfies $ f(x) \le \sin(x) $, for all real numbers <i>x</i> . Prove that	

$ a_1 + 2 a_2 + \dots + n a_n \le 1$	(3.2)
$ a_1 + 2a_2 + \dots + na_n \ge 1$	(3.2)

For what values of p does the series $\sum_{n=6}^{\infty} \left(e^{-\frac{1}{n^2}} + \frac{1}{n^2} - 1 \right)^p$ converge? Fully justify your answer.

Show that the limit $\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right)$ exists, and find an upper and lower bound for γ .

Calculate the following integral and check your result by differentiation.

$$\int (\ln x)^2 \, dx$$

(6.1)

Calculate the following integral and check your result by differentiation.

$$\int \frac{1}{x^7 - x} \, dx \tag{7.1}$$