UC Calculus Contest

April 3, 2014

Name:_

M#:____

Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete

Instructor:_

solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1

A right circular cone is inscribed in a sphere of radius R as in Figure 1. Find the maximal possible cone volume. What is the ratio between the sphere volume and the maximal inscribed cone volume?

1.1 solution

Let αR , for $0 \le \alpha \le 1$, be the distance the origin and the cone-base (so that the hight of the cone is equal to $R + \alpha R$). Setting $z = \alpha R$, $x = r \cos(\theta)$, $y = r \sin(\theta) \ln x^2 + y^2 + z^2 = R^2$, we get

$$r = R \sqrt{1 - \alpha^2}$$

so that the volume of the cone, as a function of α , is equal to

$$V(\alpha) = \frac{(R + \alpha R) r^2 \pi}{3} = \frac{1}{3} \pi R^3 (1 + \alpha) (1 - \alpha^2)$$

Solving equation $V'(\alpha) = 0$, we get

$$\alpha_1 = -1, \ \alpha_2 = -\frac{1}{3}$$

Since $0 \le \alpha \le 1$, we get $\alpha = \alpha_2 = 1/3$, and the corresponding cone-volume is equal to

$$V\left(\frac{1}{3}\right) = \frac{32\,\pi\,R^3}{81}$$

Finally since, as it can be shown, the volume of the ball is equal to $4\pi R^3/3$, the ratio between the two is equal to

$$(4\pi R^3/3)/V(\frac{1}{3}) = \frac{27}{8} \approx 3.375$$

2

One corner of a page of width a = 8 inches is folded over to just reach the opposite side as indicated in Figure 2. After expressing the length L of the crease in terms the angle θ , find the width x of the part folded over when L is a minimum.

Figure 2.

2.1 solution

Just above the lower arrow head, the three angles reading from right to left are $\pi/2 - \theta$, $\pi/2 - \theta$, and 2θ . Thus, we have

$$\cos(2\theta) = \frac{a-x}{x}, \ 2\cos(\theta)^2 = 1 + \cos(2\theta) = \frac{a}{x}, \ x = \frac{a}{2\cos(\theta)^2}$$
(2.1)
With $L = \frac{x}{x}$, we obtain $L(\theta) = \frac{a}{x}$.

With $L = \frac{x}{\sin(\theta)}$, we obtain $L(\theta) = \frac{a}{2\sin(\theta)\cos(\theta)^2}$. Differentiation $L(\theta)$, we get

$$L'(\theta) = \frac{a}{2} \frac{3\sin(\theta)^2 - 1}{\sin(\theta)^2 \cos(\theta)^3}$$

and therefore $\sin(\theta)^2 = 1/3$, and

$$x = \frac{a}{2\cos(\theta)^2} = \frac{a}{2(1-\sin(\theta)^2)} = \frac{a}{2\times\frac{2}{3}} = \frac{3}{4}a$$

So, if a = 8, then x = 6.

3

Suppose that $a_1, a_2, ..., a_n$ are real numbers such that the function

$$f(x) = a_1 \sin(x) + a_2 \sin(2x) + \dots + a_n \sin(nx)$$
(3.1)

satisfies $|f(x)| \le |\sin(x)|$, for all real numbers x. Prove that

$$|a_1 + 2a_2 + \dots + na_n| \le 1 \tag{3.2}$$

3.1 solution

Note that

$$|a_{1} + 2 a_{2} + \dots + n a_{n}| = |f'(0)| = \left|\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}\right| = \left|\lim_{x \to 0} \frac{f(x)}{x}\right| = \lim_{x \to 0} \left|\frac{f(x)}{x}\right| \le \lim_{x \to 0} \left|\frac{\sin(x)}{x}\right| = 1$$
(3.3)

4

For what values of p does the series $\sum_{n=6}^{\infty} \left(e^{-\frac{1}{n^2}} + \frac{1}{n^2} - 1 \right)^p$ converge? Fully justify your answer.

4.1 solution

For small x we have $e^x \approx 1 + x + x^2/2$. Therefore, intuitively, for large n, $e^{-\frac{1}{n^2}} \approx 1 - \frac{1}{n^2} + \frac{1}{2n^4}$, meaning that $e^{-\frac{1}{n^2}} + \frac{1}{n^2} - 1 \approx \frac{1}{2n^4}$. Formally, we apply the Limit Comparison Test:

$$\lim_{n \to \infty} \frac{\left(e^{-\frac{1}{n^2}} + \frac{1}{n^2} - 1\right)^p}{\frac{1}{n^{4p}}} = 2^{-p}$$
(4.1)

so that $\sum_{n=6}^{\infty} \left(e^{-\frac{1}{n^2}} + \frac{1}{n^2} - 1 \right)^p$ converges iff $\sum_{n=6}^{\infty} \frac{1}{n^{4p}}$ does, which happens iff 4 p > 1, i.e., iff $p > \frac{1}{4}$.

5

Show that the limit $\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log(n) \right)$ exists, and find an upper and lower bound for γ .

5.1 solution

Set $\Gamma(n) := \sum_{k=1}^{n} \frac{1}{k} - \log(n)$, where *n* is a positive integer. Then

$$\Gamma(n+1) - \Gamma(n) = \frac{1}{n+1} + \log(n+1) - \log(n) = \frac{1}{n+1} + \int_{n}^{n+1} \frac{1}{x} \, dx < 0 \tag{5.1}$$

so that the sequence $\Gamma(n)$ is decreasing. Also,

$$\log(n+1) - \log(2) = \int_{1}^{n} \frac{1}{x+1} \, dx \le \sum_{k=2}^{n} \frac{1}{k} \tag{5.2}$$

and therefore

$$\log\left(\frac{n+1}{n}\right) - \log(2) + 1 \le \sum_{k=1}^{n} \frac{1}{k} - \log(n)$$
(5.3)

Therefore, since $\lim_{n\to\infty} \log\left(\frac{n+1}{n}\right) = 0$,

$$1 - \log(2) \le \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log(n) \right) = \gamma \le \Gamma(n) = \sum_{k=1}^{n} \frac{1}{k} - \log(n)$$
(5.4)

for any integer $n \ge 1$. For example, setting n = 2,

$$1 - \log(2) \le \gamma \le 1 - \log(2) + \frac{1}{2}$$
(5.5)

or $0.306853 \le \gamma \le 0.806853$ (the "exact" value being equal to $\gamma = 0.577216$...).

6

Calculate the following integral and check your result by differentiation.

$$\int (\ln x)^2 \, dx \tag{6.1}$$

6.1 solution

Setting $u = (\ln x)^2$, dv = dx; $du = 2(\ln x)\frac{1}{x}dx$, v = x, by integration by parts we get

$$\int (\ln x)^2 \, dx = x \, (\ln x)^2 - 2 \, \int \ln x \, dx$$

Setting $u = \ln x$, dv = dx; $du = \frac{1}{x} dx$, v = x, by integration by parts we get

$$\int (\ln x)^2 \, dx = x \, (\ln x)^2 - 2 \, \int \ln x \, dx = 2 \, x + x \, (\ln x)^2 - 2 \, x \ln x.$$

7

Calculate the following integral and check your result by differentiation.

$$\int \frac{1}{x^7 - x} \, dx \tag{7.1}$$

7.1 solution

Trying

$$\frac{1}{x^7 - x} = \frac{1}{x(x^6 - 1)} = \frac{A}{x} + \frac{Bx^5}{x^6 - 1}$$

we gat A = -1, B = 1, so that (assuming 0 < x < 1)

$$\int \frac{1}{x^7 - x} \, dx = -\int \frac{1}{x} \, dx - \int \frac{x^5}{1 - x^6} \, dx = \frac{1}{6} \ln(1 - x^6) - \ln(x)$$

Checking,

$$\left(\frac{1}{6}\ln(1-x^6) - \ln(x)\right)' = -\frac{x^5}{1-x^6} - \frac{1}{x} = \frac{1}{x^7 - x}.$$