UC Calculus Contest

April 3, 2014

Name \qquad M\#: \qquad

Instructor:

\qquad
Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1

A right circular cone is inscribed in a sphere of radius R as in Figure 1. Find the maximal possible cone volume. What is the ratio between the sphere volume and the maximal inscribed cone volume?

Figure 1.

1.1 solution

Let αR, for $0 \leq \alpha \leq 1$, be the distance the origin and the cone-base (so that the hight of the cone is equal to $R+\alpha R$). Setting $z=\alpha R$, $x=r \cos (\theta), y=r \sin (\theta)$ in $x^{2}+y^{2}+z^{2}=R^{2}$, we get
$r=R \sqrt{1-\alpha^{2}}$
so that the volume of the cone, as a function of α, is equal to
$V(\alpha)=\frac{(R+\alpha R) r^{2} \pi}{3}=\frac{1}{3} \pi R^{3}(1+\alpha)\left(1-\alpha^{2}\right)$
Solving equation $V^{\prime}(\alpha)=0$, we get
$\alpha_{1}=-1, \alpha_{2}=\frac{1}{3}$
Since $0 \leq \alpha \leq 1$, we get $\alpha=\alpha_{2}=1 / 3$, and the corresponding cone-volume is equal to

$$
V\left(\frac{1}{3}\right)=\frac{32 \pi R^{3}}{81}
$$

Finally since, as it can be shown, the volume of the ball is equal to $4 \pi R^{3} / 3$, the ratio between the two is equal to
$\left(4 \pi R^{3} / 3\right) / V\left(\frac{1}{3}\right)=\frac{27}{8} \approx 3.375$

2

One corner of a page of width $a=8$ inches is folded over to just reach the opposite side as indicated in Figure 2. After expressing the length L of the crease in terms the angle θ, find the width x of the part folded over when L is a minimum.

Figure 2.

2.1 solution

Just above the lower arrow head, the three angles reading from right to left are $\pi / 2-\theta, \pi / 2-\theta$, and 2θ. Thus, we have
$\cos (2 \theta)=\frac{a-x}{x}, 2 \cos (\theta)^{2}=1+\cos (2 \theta)=\frac{a}{x}, x=\frac{a}{2 \cos (\theta)^{2}}$
With $L=\frac{x}{\sin (\theta)}$, we obtain $L(\theta)=\frac{a}{2 \sin (\theta) \cos (\theta)^{2}}$. Differentiation $L(\theta)$, we get
$L^{\prime}(\theta)=\frac{a}{2} \frac{3 \sin (\theta)^{2}-1}{\sin (\theta)^{2} \cos (\theta)^{3}}$
and therefore $\sin (\theta)^{2}=1 / 3$, and
$x=\frac{a}{2 \cos (\theta)^{2}}=\frac{a}{2\left(1-\sin (\theta)^{2}\right)}=\frac{a}{2 \times \frac{2}{3}}=\frac{3 a}{4}$
So, if $a=8$, then $x=6$.

3
Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that the function
$f(x)=a_{1} \sin (x)+a_{2} \sin (2 x)+\ldots+a_{n} \sin (n x)$
satisfies $|f(x)| \leq|\sin (x)|$, for all real numbers x. Prove that
$\left|a_{1}+2 a_{2}+\ldots+n a_{n}\right| \leq 1$

3.1 solution

Note that

$$
\begin{align*}
& \left|a_{1}+2 a_{2}+\ldots+n a_{n}\right|=\left|f^{\prime}(0)\right|=\left|\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}\right|=\left|\lim _{x \rightarrow 0} \frac{f(x)}{x}\right|=\lim _{x \rightarrow 0}\left|\frac{f(x)}{x}\right| \leq \\
& \quad \lim _{x \rightarrow 0}\left|\frac{\sin (x)}{x}\right|=1 \tag{3.3}
\end{align*}
$$

4
For what values of p does the series $\sum_{n=6}^{\infty}\left(e^{-\frac{1}{n^{2}}}+\frac{1}{n^{2}}-1\right)^{p}$ converge? Fully justify your answer.

4.1 solution

For small x we have $e^{x} \approx 1+x+x^{2} / 2$. Therefore, intuitivelly, for large n, $e^{-\frac{1}{n^{2}}} \approx 1-\frac{1}{n^{2}}+\frac{1}{2 n^{4}}$, meaning that $e^{-\frac{1}{n^{2}}}+\frac{1}{n^{2}}-1 \approx \frac{1}{2 n^{4}}$. Formally, we apply the Limit Comparison Test:
$\lim _{n \rightarrow \infty} \frac{\left(e^{-\frac{1}{n^{2}}}+\frac{1}{n^{2}}-1\right)^{p}}{\frac{1}{n^{4 p}}}=2^{-p}$
so that $\sum_{n=6}^{\infty}\left(e^{-\frac{1}{n^{2}}}+\frac{1}{n^{2}}-1\right)^{p}$ converges iff $\sum_{n=6}^{\infty} \frac{1}{n^{4} p}$ does, which happens iff $4 p>1$, i.e., iff $p>\frac{1}{4}$.

5
Show that the limit $\gamma:=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log (n)\right)$ exists, and find an upper and lower bound for γ.

5.1 solution

Set $\Gamma(n):=\sum_{k=1}^{n} \frac{1}{k}-\log (n)$, where n is a positive integer. Then
$\Gamma(n+1)-\Gamma(n)=\frac{1}{n+1}+\log (n+1)-\log (n)=\frac{1}{n+1}+\int_{n}^{n+1} \frac{1}{x} d x<0$
so that the sequence $\Gamma(n)$ is decreasing. Also,
$\log (n+1)-\log (2)=\int_{1}^{n} \frac{1}{x+1} d x \leq \sum_{k=2}^{n} \frac{1}{k}$
and therefore
$\log \left(\frac{n+1}{n}\right)-\log (2)+1 \leq \sum_{k=1}^{n} \frac{1}{k}-\log (n)$
Therefore, since $\lim _{n \rightarrow \infty} \log \left(\frac{n+1}{n}\right)=0$,
$1-\log (2) \leq \lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log (n)\right)=\gamma \leq \Gamma(n)=\sum_{k=1}^{n} \frac{1}{k}-\log (n)$
for any integer $n \geq 1$. For example, setting $n=2$,
$1-\log (2) \leq \gamma \leq 1-\log (2)+\frac{1}{2}$
or $0.306853 \leq \gamma \leq 0.806853$ (the "exact" value being equal to $\gamma=0.577216 \ldots$...).

6
Calculate the following integral and check your result by differentiation.

$$
\begin{equation*}
\int(\ln x)^{2} d x \tag{6.1}
\end{equation*}
$$

6.1 solution

Setting $u=(\ln x)^{2}, d v=d x ; d u=2(\ln x) \frac{1}{x} d x, v=x$, by integration by parts we get $\int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int \ln x d x$

Setting $u=\ln x, d v=d x ; d u=\frac{1}{x} d x, v=x$, by integration by parts we get
$\int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int \ln x d x=2 x+x(\ln x)^{2}-2 x \ln x$.

7
Calculate the following integral and check your result by differentiation.
$\int \frac{1}{x^{7}-x} d x$

7.1 solution

Trying
$\frac{1}{x^{7}-x}=\frac{1}{x\left(x^{6}-1\right)}=\frac{A}{x}+\frac{B x^{5}}{x^{6}-1}$
we gat $A=-1, B=1$, so that (assuming $0<x<1$)
$\int \frac{1}{x^{7}-x} d x=-\int_{x}^{1} d x-\int \frac{x^{5}}{1-x^{6}} d x=\frac{1}{6} \ln \left(1-x^{6}\right)-\ln (x)$
Checking,

$$
\left(\frac{1}{6} \ln \left(1-x^{6}\right)-\ln (x)\right)^{\prime}=-\frac{x^{5}}{1-x^{6}}-\frac{1}{x}=\frac{1}{x^{7}-x}
$$

