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Abstract 
Embodied cognition is sometimes presented as an alternative 
to computational approaches, the argument being that 
cognition is strongly influenced by an agent's body movement. 
However, the exact nature of this influence is still uncertain. In 
the current paper, we add to the conversation by analyzing 
adults’ predictions in a high-ambiguity task: Adults had to 
decide which of two objects would sink faster (or slower) in 
water. Ambiguity was achieved by pitting object volume and 
object mass against buoyancy: The winning object of a pair was 
sometimes the bigger and heavier one, and sometimes it was 
the smaller and lighter one. The crucial manipulation was 
whether the stimuli were real-life objects or 2D pictures. All 
participants were presented with pictures of the objects during 
a training phase (when they received feedback on their 
predictions). Real-life objects were either present during the 
phase prior to the training (jars-first condition), or during the 
phase after the training (jars-last condition). Findings showed 
a clear influence of hands-on experiences: When allowed to 
hold the objects, adults were more likely to demonstrate a 
simplistic focus on object heaviness. These results call for a 
more nuanced understanding of the effect of embodied 
experiences on the stability of representations. While 
embodiment sometimes can help distinguish relevant from 
irrelevant information, we show that it can also destabilize 
representations acquired through visual information.  

Keywords: action; knowledge representation; predictions; 
ambiguity; misconceptions; hands-on explorations 

Introduction 
What is the source of our thoughts, beliefs, attitudes, and the 
like? Traditionally, this question has been addressed with 
models of symbolic activity of the mind: Thoughts might be 
formed on the basis of combining symbols, which themselves 
are computed on the basis of simpler symbols, derived from 
sub-symbolic codes of sensation and perception. Approaches 
of embodied cognition stand in sharp contrast to the 
traditional view of computational models. They claim that 
mental activity, seemingly a bodiless manipulation of 
symbols, is instead strongly influenced by the very physical 
non-symbolic movement of our bodies (e.g., Chemero, 2011; 
Gibbs, 2005; Wilson & Clark, 2009). Rather than suggesting 

purely symbolic activities of bodiless minds, proponents of 
embodied cognition make a convincing case that higher-level 
cognition is constrained by our bodily experience of being in 
the world (Goldin-Meadow, Cook, & Mitchell, 2009).  

In the current paper, we seek to explore the influence of 
embodied experiences in more detail. Our guiding theoretical 
framework does not subscribe to a specific representational 
format or cognitive architecture. Instead, we postulate that 
the mind makes use of whatever constraints are available in 
order to perform systematically (e.g., Kloos, Fisher, & Van 
Orden, 2010). These constraints could come from symbolic 
content, from bodily experiences, or from constraints outside 
the mental or bodily activity. The central question, then, 
pertains to how these different constraints interact. For 
example, to what extent does embodied experience override, 
support, or interfere with visual perception?  

To explore this question, we analyzed the responses of 
adults in a high-ambiguity prediction task: Adults had to 
decide which of two objects would sink faster (or slower) in 
water. Ambiguity was achieved by pitting object volume and 
object mass against buoyancy: The winning object of a pair 
was sometimes the bigger and heavier one, and sometimes it 
was the smaller and lighter one. Thus, the task could not be 
solved with a simplistic rule that focuses on one dimension 
only (i.e., just weight or just size). To be successful, one must 
integrate both mass and volume by paying attention to the 
distribution of mass. While this integration can be 
accomplished, even by children (Kohn, 1093), it is not likely 
to be an adult’s first guess (Castillo & Kloos, 2013). In fact, 
the initial tendency might be to focus on mass exclusively to 
make a decision (Castillo, Kloos, Richardson & Waltzer, 
2015).  

Note that high-ambiguity tasks, while not necessarily 
common in adults’ everyday experiences, have been used 
extensively to better understand the mind’s inner workings. 
The idea is that a high-ambiguity context reveals internal 
biases, natural preferences of the mind, so to speak. They are 
particularly useful to explore the role of embodied 
experiences: If embodied experience matters, then it should 
help disambiguate the constraints of the task. An added twist 
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here is that the specific task we chose – predicting the sinking 
behavior of objects – yields common misconceptions, namely 
that a reliance on mass alone could lead to successful 
performance. Would haptic explorations allow adults to 
overcome these misconceptions faster? Or would it in fact be 
more difficult for adults to benefit from such experiences?  

Our overall method was as follows: Adults were presented 
with pairs of transparent objects that differed in size and 
contained a certain number of weights, clearly visible to 
participants. There were three phases: a pre-test, a training, 
and a post-test. Each phase had the same prediction trials, the 
difference being only in whether participants received 
feedback (training) or not (pre-test, post-test). The crucial 
manipulation was, before each prediction, whether adults 
were presented with real-life objects, or whether they merely 
saw the objects via 2D pictures. Specifically, one group of 
participants could explore real-life objects during the pre-test 
(jars-first condition), and one group of participants could 
explore real-life objects during the post-test (jars-last 
condition). During all other phases, stimuli were the 2D 
pictures of the objects. To what extent does the embodied 
experience affect performance?  

Method 

Participants 
Participants were 112 adults between 18 and 27 years of age, 
recruited from a Midwestern university. They were each 
assigned to one of two conditions: the jars-first condition (17 
men, 38 women; M = 19.03 years, SD = 1.69), or the jars-last 
condition (14 men, 43 women; M = 19.02 years, SD = 1.67). 
They received partial course credit for participation, 
following an IRB-approved procedure. 

Material and Apparatus 
Real-life sinking objects were used in this experiment, 
dropped into a water tank to create feedback for adults’ 
predictions. The objects were transparent glass jars that 
differed in their sizes. Round aluminum discs (43g) could be 
placed inside the jars to manipulate mass. The water tank was 
1m tall and had a vertical dividing wall to make it possible 
for each jar to sink without being affected by the other’s 
turbulences.  

The jars were combined into pairs of objects. Figure 1 
shows an example for various different trials, which differ in 
how mass and volume correlated with rate of sinking. The 
faster sinking object within a pair is marked with a star. In 
two of the trial types, only one of the features was varied 
(either mass or volume), and in three of the trial types, both 
mass and volume were varied. Specifically, in the small-wins 
pair (Fig. 1A), mass was held constant and the size of the jar 
was varied in such a way that the smaller jar sank faster. In 
the heavy-wins pair (Fig. 1B), volume was held constant and 
mass was varied in such a way that the heavier jar sank faster. 
In the big/heavy-wins pair (Fig. 1C), the faster sinking object 
was bigger and heavier than the slower object. In the 
small/heavy-wins pair (Fig. 1D), the faster sinking object was 

smaller and heavier than the slower object. And finally, in the 
small/light-wins pair (Fig. 1E), the faster sinking object was 
smaller and lighter than the slower object. There were nine 
pairs of each trial type, resulting in a total of 45 unique pairs. 
 

 
 

Figure 1: Example trials. Star marks jar that sinks faster. 
A: Small-wins pair. B: Heavy-wins pair. C: Big/heavy-wins 

pair. D: Small/heavy-wins pair. E: Small/light-wins pair. 
 
For simplicity, we will only report performance on the 

big/heavy-wins pairs (Fig. 1C) and the small/light-wins pairs 
(Fig. 1E). These two types of pairs create the high-ambiguity 
task context needed for the current purposes. This is because, 
while mass and volume correlate positively (the bigger of the 
two objects was also the heavier one), it was sometimes the 
heavier and sometimes the lighter object that sank fastest. 
Thus, to perform correctly, it would not be sufficient to pay 
attention to either mass or volume alone. All other trials had 
low ambiguity and will be considered fillers (indeed, adults 
performed largely at ceiling during those trials).  

Pairs were presented either as actual jars or as pictures on 
a screen. Figure 2 shows the picture versions of the stimuli. 
Each trial included a close-up picture of a pair with discs 
outside the jar (Fig. 2A) as well as a close-up with discs inside 
the jar (Fig. 2B). Feedback was always provided as a picture 
of the jars being dropped in the tank of water (Fig. 2C). A 
numeric keypad was used to record participants’ predictions.  

 

 
 

Figure 2: Example pictures.  
A: Empty jars with weights on either side. B: Jars filled 

with weights. C: Jars sinking in the water tank.  

Procedure 
Participants were tested individually in the lab, using 
DirectRT Precision Timing Software (2012 Version) to 
administer the experiment on a desktop computer. The 
experiment consisted of a total of 360 prediction trials, 
divided into three phases. The first phase was the pre-test (90 
trials): Participants made predictions across various jar 
combinations, without receiving any feedback. The second 
phase served as training (180 trials): Adults’ predictions were 
followed by corrective feedback. Finally, the last phase was 
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the post-test (90 trials), featuring prediction trials that were 
identical to the pre-test (no feedback provided). 

Our main manipulation was the timing of the embodied 
experience. Participants held the real objects either during the 
pre-test (jars-first condition), or during the post-test (jars-last 
condition). The training was always carried out with pictures. 
For generalizability purposes, we also manipulated the type 
of predictions adults had to make: Participants were either 
asked to predict which of two jars would sink faster, or which 
of two jars would sink slower.  

During familiarization, participants were shown empty jars 
of different sizes, as well as several aluminum discs. They 
were told that all the discs have the same weight. The 
experimenter then filled the large and small jars with 
aluminum discs and asked the participant to predict which of 
them would sink faster in water (or slower). Participants were 
encouraged to lift the jars before making their predictions. 
Then they were provided with feedback pictures showing the 
outcome of the jars after being dropped in water. Finally, 
participants were shown the keypad and how it works. Prior 
to the experiment proper, they were informed that the pictures 
were taken from the real objects. 

For predictions with real-life objects (pre-test or post-test, 
depending on condition), participants sat in front of an 
opaque box (60 x 25 x 40 cm) that served as a table to hold 
the objects. It also served as a barrier behind which the 
researcher kept the 12 jars (see Fig. 3 for a schematic over-
head view of this arrangement). Based on a random order 
determined for each participant prior to the start of the 
experiment, the jar pairs were presented one at a time. For 
each pair, participants were asked to make a prediction about 
which one of the two jars would sink faster (or slower) in 
water. Participants were encouraged to respond by saying 
“left” or “right”, corresponding to whether the winning (or 
losing) jar was in their left hand or right hand.  

 

 
 

Figure 3: Diagram of the set-up for prediction trials with 
real jars. R: Researcher. C: Video camera. P: Participant. 
 
For predictions with pictures (pre-test or post-test, 

depending on condition), participants were first shown an 
image of two empty jars next to each other, with a stack of 
discs by each jar. This allowed participants a clear view of 
the number of discs for each object. After 1.5 seconds, the 
image was replaced with a picture of the same two jars, but 
now filled with the discs and closed with a lid. Participants 
were asked to decide which of the two jars would sink faster 
(or slower). Figure 4A shows such a trial in schematic form. 

There was no time restriction for making a prediction. The 
trial ended when the participant pressed the keypad to provide 
a prediction. A fifth of the all trials were big/heavy-wins 
trials, and a fifth of the trials were small/light-wins trials, 
interspersed with filler trials.  

Training was identical to pre- and post-test predictions, the 
only difference being that a feedback picture was shown for 
1.5 seconds, right after the participant made a prediction. On 
the very first feedback trial, the image was explained. The 
faster sinking object was pointed out on the computer screen, 
and participants were provided with explicit feedback (e.g., 
“Yes, you were right”; “No, look, it was the other one that 
sank faster”). Training took place between pre- and post-test. 
Of all the training trials, a fifth were big/heavy-wins trials, 
and a fifth were small/light-wins trials, interspersed with 
filler trials.  

 

 
 

Figure 4: Schematic representation of the prediction trials.  
A: Example picture trial during pre- or post-test.  
B: Example picture trial during feedback training.  

Results and Discussion 
Our dependent variable was the proportion of correct 
predictions on big/heavy-wins and small/light-wins trials. 
Figure 5 presents the accuracy data for these two trial types, 
separated by phase (pre-test, training and post-test), and by 
the embodiment manipulation (jars-first vs. jars-last).  
 

 
 

Figure 5: Proportion of correct answers for trial type and 
phase, separated by condition. Error bars represent  
standard errors of the mean. Circles highlight when  

real-life jars were used. 
 

A 2 x 2 x 3 mixed-design ANOVA was carried out, with 
trial type (big/heavy-wins; small/light-wins) and phase (pre-
test; training; post-test) as within-group factors, and with 
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condition (jar-first; jar-last) as the between-group factor. We 
found a significant 3-way interaction, F(2, 220) = 22.47, p < 
.001, K2 = .17, prompting us to look at the results separately 
by phase (see Table 1 for a summary of the results).  

During the pre-test, participants’ performance was 
markedly different for the two types of trials: While 
performance was at ceiling (or close to) on big/heavy-wins 
trials (MPic = .94; MJar = .94), participants made systematic 
mistakes on the small/light-wins trials (MPic = .37; MJar = 
.24). It appears that participants resolved the ambiguity of the 
prediction task by focusing on weight exclusively. A 2 x 2 
mixed-design ANOVA, with trial type and condition as 
factors, revealed a main effect of trial type, F(1,110) >  100; 
p < .001, a main effect of condition, F(1,110) = 8.10; p < .01, 
as well as a significant interaction, F(1,110) =  4.74; p = .032. 
The interaction is driven by the fact that participants’ 
mistakes on small/heavy-wins trials were even more 
pronounced when they handled jars (jars-first condition) than 
when they viewed pictures (jars-last condition), F(1,110) =  
6.32; p = .013. 

During the training, the difference between trial types 
disappeared, whether participants were in the jars-first 
condition (MBig/heavy = .80, MSmall/light = 0.77) or in the jars-last 
condition (MBig/heavy = .80; MSmall/light = 0.82). A 2 x 2 mixed-
design ANOVA (trial type by condition) yielded no main 
effects and no interaction, Fs(1,110) < 2.37; ps > .12. 
Performance was clearly above chance, t(111) > 5; p < .01, 
implying that adults benefited from the training and  quickly 
learned that a focus on mass or volume alone yields mistakes.  

To compare performance during training and pre-test, we 
carried out two 2 x 2 repeated-measure ANOVAs (trial type 
by phase), one for the jar-first condition, and one for the jar-
last condition. For both conditions, the analysis yielded 
highly significant main effects and interactions, Fs > 80, ps < 
.001. While performance on big/heavy-wins pairs decreased 
slightly from pre-test to training in both conditions, ps < .001 
it starkly improved for small/light-wins pairs, ps < .001. The 
results show that training had very similar effects on 
performance, whether participants had a chance to haptically 
explore the objects prior to training or not. This confirms that 
the switch between 3D objects to 2D pictures of the objects 
did not have a discernable effect on performance.  

Finally, during the post-test, the difference between trial 
types was affected by condition. The trial type by condition 
mixed-design ANOVA revealed a main effect of trial type, 
F(1,110) = 11.21; p < .001, and a marginal main effect of 
condition, F(1,110) = 3.55; p = .06, both driven by the highly 
significant interaction, F(1,110) =  26.72; p < .001, K2 = .20. 
To be more specific, trial types yielded different performance 
when participants made their predictions using real jars (jars-
last condition: MBig/heavy = .88, MSmall/light = 0.67; F(1,110) = 
36.94; p < .001, K2 = .25), but not when they made their 
predictions using pictures (jars-first condition: MBig/heavy = 
.78; MSmall/light = 0.83; F(1,110) = 1.63; p = .20.)  

 
 

Comparing post-test performance with training 
performance, we found no significant main effect of trial type 
in the jars-first condition, F < 1. Put differently, when adults 
were presented with pictures, they retained what they learned 
during the training and performed well even without 
feedback. In contrast, in the jars-last condition, when 
participants were given the opportunity to explore the objects 
haptically, performance changed from training to post-test. 
The 2 x 2 repeated-measure ANOVA (trial type by phase) 
revealed a significant main effect of trial type F(1,56) = 
14.83; p < .001; a significant main effect of phase, F(1,56) = 
5.56; p = .02; and a significant interaction, F(1,56) = 42.63; 
p < .001. From training to post-test, performance on 
big/heavy-wins pairs increased, p < .001, while performance 
on small/light-wins pairs decreased, p < .001. Put differently, 
participants in the jars-last condition reverted back to 
disambiguating the conflict in making predictions by 
focusing on the feature of weight. 

 
Table 1. Summary of results. 

 
Pre-test 
x Independent of condition, performance was at 

ceiling when the winning jar was big and heavy. 
x Independent of condition, systematic mistakes 

were made when the winning jar was small and 
light. 

x Systematic mistakes were higher when 
participants used jars (compared to pictures).  

Training 
x Independent of condition, performance was 

equally high on both big/heavy-wins and 
small/light-wins pairs. 

x Participants made some mistakes, but 
performance was overall above chance. 

Post-test 
x When participants used pictures, performance 

remained unchanged (compared to the training).  
x When participants used jars, performance 

increased for the big/heavy-wins pairs, while it 
decreased for the small/light-wins pairs.  

 
Difference scores. To capture these findings on the level of 

individual participants, we calculated a difference score for 
each participant, based on their performance on the 
big/heavy-wins and small/light-wins trials. Specifically, we 
subtracted average accuracy scores for the small/light-wins 
trials from the big/heavy-wins trials. This difference reflects 
the extent to which participants held a big/heavy bias, 
choosing the bigger/heavier jar as the winner more often than 
the smaller/lighter jar. Figure 6 shows obtained results.  
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Figure 6: Average difference between big/heavy-wins and 
small/light-wins trials, per phase and condition.  
Error bars represent standard errors of the mean.  

Circles highlight when real-life jars were used. 
 
Results are very much in line with our analysis of trial-

based performance: Highest difference scores were obtained 
during pre-test (MPic = .56; MJar = .71), reflecting the naïve 
heaviness bias. Importantly, the difference score was higher 
for participants who were given the opportunity to explore 
the objects haptically than for participants who saw pictures, 
F(1,110) = 4.74; p = .03.  

Difference scores decreased substantially during training, 
(MPic = .02; MJar = .03), reaching values that were statistically 
undistinguishable from zero, simple-sample t < 1. This 
suggests that participants no longer based their predictions on 
mass or volume alone. They quickly discovered a new 
criterion, yielding the same degree of success (i.e., number of 
mistakes) in both types of trials.  

The central finding is during the post-test, after participants 
had learned about the shortcomings of a naïve heaviness bias. 
While participants in the jars-first condition largely retained 
the difference scores that they had obtained during training 
(MPic = .04), participants in the jars-last condition did not 
(MJar = .21). Their difference scores shot up, significantly 
more than the difference scores obtained in the jars-first 
condition, F(1,110) = 26.72; p < .001. Participants who were 
allowed to handle the real objects during the post-test phase 
seemed to unlearn some of what was learned during training.  

Summary and Conclusion 
We set out to explore the extent to which embodied 
experiences override, support, or interfere with experiences 
that are gained from visual perception. Adults participated in 
a prediction task about sinking objects, a task that is thought 
to elicit mistaken beliefs about what makes an object sink 
faster or slower in water. Feedback during part of the 
prediction task was expected to change some of those initial 
misconceptions. Indeed, adults demonstrated a substantial 
amount of learning during training. At the same time, we 
succeeded in creating a task that was sufficiently difficult for 
adults to perform below ceiling, but not so difficult that they 
would merely make random guesses. This is the kind of 

regime that is likely to shed light on the constraints on mental 
activity.  

How did embodied experience interface with performance 
when using 2D pictorial stimuli? Our results are clear: there 
was no evidence that embodied experience simply overrode 
visual perception. Even though adults were presented with 
the exact same trials across conditions, when their chance to 
explore objects haptically took place before training (jars-
first condition), performance was decidedly different from 
when it took place after the training (jars-last condition). This 
suggests that behavior derived from embodied experiences is 
not separable from behavior derived from other means of 
perception. This, of course, is no surprise to a one-mind-one-
behavior systems view (e.g., Clark, 2013; Smith, 2005). 
Visual and embodied perception are likely to be interlinked. 
Thus, results that argue for a dissociation between visual and 
embodied experience need to be re-evaluated carefully. 

We also found no evidence that embodied experience 
supports visual perception. This is at least the case if support 
pertains to performing accurately. Whether participants got a 
chance to haptically explore objects before or after the 
training, their performance on the small/heavy-wins trials 
was lower with real jars than when they saw the objects as 
pictures. This is especially evident after the training, when 
participants reached equivalent levels of competence. 
Performance levels stayed the same during the post-test for 
adults presented with pictures, but critical mistakes arose 
from adults presented with the real-life objects. These 
findings undermine blanket claims of the general advantage 
of hands-on, embodied learning.  

Results show that embodied experience interfered with 
visual perception. It did not act separately, and it did not 
support it, but nevertheless, it interfered with it drastically. 
This finding far from trivial given the current task, because 
relevant information, say about object mass and volume, 
were available to both modalities: participants could count 
the number of weights and compare the sizes of the objects, 
whether they were presented in real life or as pictures. If the 
same information can be obtained in theory, why then did we 
find differing performance as a function of condition?  

Could it be that proprioceptive information simply made 
the task harder, yielding non-specific mistakes? This is 
unlikely, given that the differences in performance between 
the jar-based and picture-based contexts were rather specific, 
both in the pre-test and the post-test. In fact, there was not a 
general increase in mistakes for participants exposed to real-
life objects: When they explored objects haptically, they 
performed highly successfully on big/heavy-wins trials, even 
better than adults who merely saw pictures. Their mistakes 
increased only on the small/light-wins trials. This pattern of 
performance, to perform well on big/heavy-wins trials and 
poorly on small/light-wins trials, is the signature of a 
heaviness bias, a bias that was more pronounced when 
participants could hold objects, rather than view them on a 
computer screen.  
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One could argue that our set-up was an unfair comparison: 
Embodied experience might support visual perception, but 
not in a task in which salience to heaviness yields mistakes. 
Embodiment might make heaviness salient, due to the 
inherently salient down-ward force of holding objects. Our 
results might reflect nothing more but a bias of embodied 
experience to increase the salience of heaviness, failing to 
generalize to embodied experience outside of heaviness 
tasks. While our data do not speak directly to this criticism, it 
is nevertheless worth questioning. This is because the 
difference in mass between the two objects in a pair is likely 
to be far more salient in the picture case than the real-jar case. 
The weights were too light (only 43g) to create differences 
that could be readily perceived haptically. It is most likely 
that adults judged difference in weight on the basis of visual 
information. Thus, a high salience of heaviness in embodied 
experiences might not explain our results.  

There are several possible reasons for why the embodied 
experience increased the heaviness bias of adults. One 
possibility is that, rather than making heaviness more salient, 
the redundancy of information between visual and tactile 
information may have prompted the system to revert to a 
simpler belief (in this case, about heaviness). Without this 
redundancy of information, adults might have relied on their 
memory of feedback on specific pairs, and merely guessed on 
those pairs they could not remember. The haptic information 
might have disrupted this strategy to some extent. To test this 
possibility, the study would need to be expanded to include a 
manipulation of explicit, non-tactile disruption. 

Our results support the idea that performance emerges from 
the interaction of many components that change each other 
over time driven by the system’s own history (Smith, 2005; 
Smith & Breazeal, 2007). Such interactive processes have a 
non-linear character, and, beyond a certain size and number 
of relations among their constituents, they express a complex 
behavior of self-organization that cannot be explained by the 
simple features of the elements (Steenbeek & Van Geert, 
2008; Van Orden, Holden, & Turvey, 2003). This dynamic 
pattern is difficult to place in a single component, because it 
is a product of the coordination of the whole system 
(Steenbeek & Van Geert, 2008). It is possible that the mind 
capitalizes on the dynamics of the body when needed 
(Spencer, Austin, & Schutte, 2012; Turvey, 1990; 2007). 
However, our results call for a more nuanced understanding 
of the effect of embodied experiences on the stability of 
representations.  
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