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Do connectionist and dynamic-systems models 
converge on a unified theory? The answer 
depends on the kind of mechanism that the 
two models attempt to unravel. Two views of 
mechanism avail themselves to contemporary 
scientists. One view of mechanism represents 
cognitive activity as reducible to a cognitive 
architecture of separate cognitive components. 
Another view sees cognitive activity as emergent 
and highly dependent on fine details of the con-
texts in which behavior emerges. We will argue 
in this chapter that connectionist and dynamic 
systems models complement each other and 
collectively move toward a unified theory of 
development if they subscribe to the second 
view of mechanism, one that treats behavior as 
soft assembled in the immediate context. 

The chapter organization is as follows. In 
section Where Models Converge in Stalemate, 
we address why models aimed at reducing 
behavior to cognitive components cannot make 
clear headway. The argument is that a reduction 
of behavior requires human performance to be 
relatively context free. Yet, as we show with the 
example of balance task performance, human 
performance is highly context dependent, even 
in the sterile laboratory context of balance 
experiments. In section Taking Context Effects 
Seriously, we elaborate on what such context 
dependence could mean. While not conclu-
sive on its own, strong context dependence is 
consistent with the idea that cognitive activ-
ity is softly assembled to suit the immediate 
task environment. Soft assembly offers a plau-
sible alternative to hard-assembled cognitive 

functions—functions that exist prior to and 
independently of the task context. We review 
more pointed evidence for soft assembly and 
discuss why models that take soft assembly 
seriously—connectionist or dynamic systems— 
anticipate the unified theory. 

WHERE MODELS CONVERGE IN STALEMATE 

At the center of the argument is strong con-
text dependency in human performance. We 
develop this argument around well-studied 
examples from developmental psychology, in 
particular children's performance on balance 
scale tasks. However, our points pertain to cog-
nitive modeling more generally. 

Balance Scale Performance and 
Associated Models 

Picture a child in a balance scale experiment. 
The balance scale straddles a fulcrum and has 
pegs along its surface on which to set weights 
(see Fig. 12.1). The experimenter sets some 
weights and asks the child to predict the behav-
ior of the scale. Will it stay balanced, will the 
right side tip, or will the left side tip? To per-
form correctly in every case, the child must take 
into account the number of weights on each side 
of the bar, the distance of each weight from the 
fulcrum, and their product. 

Different children give different kinds 
of answers to balance scale problems of this 
sort, but four kinds of answers seem reliable 
and systematic (Siegler, 1981). (I) One class of 
answer appears to reflect an exclusive focus on 
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Figure 12.1. Schematic illustration of a balance scale apparatus 
The balance scale apparatus depicted has four pegs on each side; the number of weights on each side varies 
during the balance scale task. 

the amount of weight on each side of the ful-
crum. Children who answer this way consis-
tently expect the side with the most weights to 
tip. When there are equal numbers of weights 
on each side, children in this group expect the 
balance scale to stay level, ignoring distance 
from the fulcrum. (II) A second class of answer 
appears to take into account distance from the 
fulcrum, but only when weights are equally dis-
tributed on both sides. Children who produce 
this kind of answer predict that the heavier 
side will tip. But when both sides have the same 
numbers of weights, they predict that the side 
with weights furthest from the fulcrum will tip. 
(Ill) A third class of answer takes into account 
both weight and distance from fulcrum, but 
does not suggest a systematic integration of the 
two dimensions. Children who produce this 
class of answers correctly predict the effect of 
weight when the distances are the same, and 
they correctly predict the effect of distance 
from fulcrum when the number of weights is 
equal. However, when both weight and distance 
from fulcrum differ, then these children simply 
guess. (IV) A final, fourth class of answers 
appears to take into account both relevant 
dimensions (number of weights and distance 
from the fulcrum) and integrate dimensions 
appropriately when the two dimensions are pit-
ted against each other. 

A variety of models have been proposed 
to explain the four kinds of answers and the 
transition from one type of answer to the next 
more sophisticated. Production-rule models 
suggest that children's performance derives 
from rule-like algorithms or strategies that can 
change rather suddenly as a result of experience 

(e.g., Klahr & Siegler, 1978; Langley, 1987; 
Sage & Langley, 1983; Schmidt & Ling, 1996). 
Connectionist models, on the other hand, 
suggest that children's performance is not a 
function of explicit rules but rather a grad-
ual adaptation to statistical relations between 
balance scale appearance and response (e.g., 
McClelland, 1989, 1995; Shultz, Mareschal, & 
Schmidt, 1994; Shultz, Schmidt, Buckingham, 
& Mareschal, 1995). Finally, dynamical systems 
models capture developmental changes as sud-
den jumps in the cusp catastrophe—a rule-like 
response looses stability and changes suddenly 
in a phase transition or bifurcation to a new rule 
(e.g., Van Rijn, Van Someren, & van der Maas, 
2003). 

The condensed overview of these mod-
els indicates some disagreement among them 
about the causal mechanism that could under-
lie balance performance. One solution to the 
disagreement has been to evaluate the degree to 
which the output of a model can capture human 
performance overall (Van Rijn et al, 2003). For 
instance, one could find a way to calculate overall 
fit across models in a single score and conclude 
that the model with the best score must be using 
the correct mechanism—the mechanism that 
best mimics the underlying cognitive architec-
ture. On the grounds of this logic, production-
rule models might receive a low score because 
they have difficulty capturing the developmen-
tal transition to a more sophisticated rule. And 
connectionist models might receive a low score 
because they do not capture rule-like human 
performance unless the rules are part of the sta-
tistical relations in the training set (Raijmakers, 
van Koten, & Molenaar, 1996). 
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We suggest, however, that such a solution is 
premature because it does not adequately con-
sider how context figures into the disagreement. 
The models that presently compete emphasize 
the axiom that behavior can be the same across 
different laboratory contexts. They emphasize 
that psychological constructs are motivated 
by "behavioral consistency over varying con-
texts" (Embretson, 2006, p. 50; Cronbach & 
Meehl, 1955). Unquestioning adherence to this 
axiom rules out context-sensitive behavior as 
a topic of study. Or, at least, it ascribes context 
effects to secondary performance limitations 
that come and go with task, rather than to a 
participant's primary competence. Thus, the 
models that would compete for best overall fit 
tend to assume that scientifically informative 
behavior stands outside of context. This stance 
would beg the question of context effects, 
accepting before the fact that only context-free 
behavioral effects adequately pick out under-
lying mechanisms. But as we argue next, con-
text effects actually distinguish between the 
models. 

Balance Scale Performance Is 
Context Sensitive 

Adults, children, and even toddlers move 
through uncountable varieties of physical and 
social contexts with fluid ease—from outdoor 
play on the slippery slide to indoor play on the 
paintball court, from being a peer to being a 
child or parent, and from quietly drawing to 
arguments about bedtime. Even in the artificial 
and somewhat sterile environments of cognitive 
laboratories, context effects are paramount. 

Take again the example of balance scale stud-
ies. The four types of balance scale behaviors 
described above—rules I, II, III, and IV—are 
well known and often cited. But it would be 
grossly misleading to suggest that this typol-
ogy captures children's full range of balance 
behaviors. In fact, it captures only a limited set 
of options allowed within the particular task 
context (Hardiman, Pollatsek, & Well, 1986). 
Limits come from a variety of methodological 
choices that are rationalized in terms of good 
experimental design. In this section, we discuss 
some of these choices in more detail. 

One methodological choice is to give or 
hold back feedback during children's test per-
formance. In the standard balance scale task, 
a child is presented with a balance scale sce-
nario in each measurement trial, and after pre-
dicting the behavior of the balance scale, the 
child progress immediately to the next trial. 
But feedback during testing changes the likeli-
hood that a child's performance will adhere to 
one of the four rules, especially when feedback 
is tailored to a child's beliefs (Hardiman et al., 
1986; Kliman, 1986). Siegler and Chen (1998), 
for example, carefully constrained the feedback 
provided to preschoolers to stop them from 
forming the rule greater distance goes down 
instead of rule I (ignore distance] or rule II (pay 
attention to distance only if weight is equal). 

Another choice is the kinds of response 
options that children are allowed to give. In the 
standard task, children are allowed only three 
answer options: left side down, right side down, 
or balance. If children are provided with more 
flexible options, as when they are allowed to 
adjust the number of weights and the position 
of weights on the scale, children's performance 
can follow an entirely different rule called the 
addition rule. Under these circumstances, chil-
dren integrate both the number of weights 
and their distance from the fulcrum accord-
ing to an additive algorithm (Normandeau, 
Larivee, Roulin, & Longeot, 1989; Wilkening 
& Anderson, 1982). That is to say, they do not 
focus on one dimension only (rule I-III), nor do 
they integrate dimensions according to the cor-
rect multiplication algorithm (rule IV). 

Yet another choice of method is the rather 
limited range of possible balance scenarios pre-
sented to participants. Only four pegs are fit-
ted on each side of the fulcrum and only four 
weights can be placed on the pegs. This yields 
rather small discrepancies between the left and 
right arms of the balance scale. As it turns out, 
the magnitude of discrepancy between left and 
right side matters—an effect known as the torque 
effect. Children perform better with larger dif-
ferences in torque when predicting the behav-
ior of the balance scale (Ferretti & Butterfield, 
1986; Ferretti, Butterfield, Cahn, & Kerkman, 
1985; Jansen & Van der Maas, 1997). 



256 REACTIONS FROM THE OUTSIDE 

  

The list goes on. Another design choice bal-
ances out the number of trials of each type. In 
the standard task, the dimension number-of-
weights is pitted against the dimension dis-
tance-from-fulcrum in half of the trials, while 
either one or both dimensions are held constant 
in the other half. Tasks that allow a greater and 
unbalanced variety of configurations of weights 
do not elicit performance of the four rules 
(Kliman, 1986). Children no longer form rules 
on the basis of differences in weights or distance 
from the fulcrum; they form rules about mathe-
matical relations, specific to their narrow expe-
rience. For example, a child will abstract from 
examples like "one weight on the ninth peg bal-
ances nine weights on the first peg" to become 
"one weight on the nth peg balances n weights on 
the first peg." Yet the child will generalize this 
belief no further, not even to accommodate two 
or more weights on the nth peg. 

Finally, a fifth methodological choice puts 
limits on proprioceptive information avail-
able to the child. Children in the standard task 
are provided with proprioceptive information 
about weight (children are encouraged to hold 
the weights), but not about how distance of 
weights affects balancing. The lack of proprio-
ceptive information about how distance affects 
balance selectively increases the difficulty for 
children to correctly take into account distance 
(Hardiman et al, 1986). In particular, exclusive 
proprioception of weight could bias children's 
performance toward rule I (greater weight goes 
down) and rule II (if weight is the same, greater 
distance goes down), but against a rule based on 
distance alone. In fact proprioceptive informa-
tion about distance leads children to perform as 
though the rule is (greater distance goes down) 
but completely ignore differences in weight 
(KarmilofT-Smith & Inhelder, 1974). And chil-
dren will sustain this rule for some time despite 
contradictory evidence, suggesting that this dis-
tance rule is at least as stable as rules I-IV. 

Strong context dependence is of course not 
limited to balance scale tasks. Quite the oppo-
site is the case. Context-dependent performance 
is the rule in developmental psychology, not the 
exception (e.g., Gigerenzer & Richter, 1990; 
Lawton, 1993). One could even argue that the 

most salient outcome of American-style post-
Piagetian research has been to demonstrate 
extreme context sensitivity. Indeed, changes in 
task design can yield more and more sophisti-
cated competence in younger children, mak-
ing contextual support an important causal 
variable (c.f. Keen, 2003). Nonetheless, despite 
omnipresent context effects, the effect of con-
text is rarely studied in its own right. 

Explaining Away Context Effects 

One common argument is that differences in 
performance due to contexts can be ignored 
because they do not reflect children's true com-
petence. Instead they are mere performance 
limitations due to underdeveloped language 
skills or memory limitations, for example. 
Yet where does performance end and compe-
tence begin? To illustrate this dilemma, take 
children's performance in another integration 
task, one that tests children's integrative under-
standing of distance, velocity, and travel time 
(Wilkening, 1981). In one task context, children 
estimated the distance an object traveled, after 
observing its velocity and travel time. In a sec-
ond task context, children estimated the time an 
object traveled, after observing its velocity and 
travel distance. And in the third task context, 
children estimated an object's velocity, after 
observing the time and distances traveled. Each 
of these three contexts is a permutation of the 
relations among distance, velocity and travel 
time. And each permutation asks the child for a 
prediction of one factor based on the other two 
factors as antecedents. The important finding 
for our argument was that each permutation 
yielded a qualitatively different outcome. For 
example, 5-year-old children integrate speed 
and time multiplicatively to estimate the dis-
tance traveled, but they integrate speed and dis-
tance additively to estimate the time traveled, 
and they used distance exclusively to estimate 
speed—three qualitatively different outcomes. 

Another way to treat task effects is to assume 
that they are a simple add-on to other factors, 
notably to cognitive functions. For instance, if 
children simply performed better in one bal-
ance task than another, then, all other things 
being equal, task effects are superposed on 
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other effects. In this case, one could legitimately 
partition out task context as an independent 
source of variation in data. In a model, task 
context would then become a fixed parameter. 
But task and context effects rarely combine so 
straightforwardly, in balance performance or 
any other developmental phenomenon. As our 
review illustrates, children tested in a balance 
task do not simply perform better or worse. 
They exhibit different qualities of performance 
in different task contexts. 

Still another way to treat contexts effects is 
to equate different effects with separate compo-
nents of the mental architecture. Successful per-
formance in one context might reflect implicit 
knowledge, for example, while performance in 
a different context reflects explicit knowledge. 
This solution may appear clear-cut when tasks 
differ conceptually. For instance, tasks that 
require a physical action such as balancing a rod 
can appear conceptually different from tasks 
that require a verbal judgment of balance (c.f. 
Kirst, Fieberg, & Wilkening, 1993; Levin, Siegler, 
& Druyan, 1990). A physical action might shed 
light on implicit knowledge, while verbal action 
might shed light on explicit knowledge—two 
distinct forms of representation. However, even 
if we ignore stalemates that have emerged over 
supposedly clear-cut distinctions (Cleeremans, 
1997; Farah, 1994), this approach runs aground 
when tasks are conceptually alike. For example, 
it is not clear how a balance scale task with a 
small number of weights and pegs differs con-
ceptually from balance scale tasks with a large 
number of weights and pegs. Both should entail 
the same knowledge; so finding a difference in 
performance leaves one guessing intuitively 
about what the separate components might be. 
But to merely equate effects with components, 
what has been called the effects = structure fal-
lacy (Gibbs, 2006; Lakoff, 1987), yields a theo-
retical enterprise that is unpredictable, circular, 
and likely to end in stalemates among compet-
ing intuitions. 

Finally, the most widely practiced response 
to task effects is to argue about which context is 
more transparent to mental functions, or equiv-
alently which task context produces more pure 
data than another. In the example of the balance 

scale performance, Siegler (1981) defends the 
highly structured and methodologically pre-
cise task context of his assessment procedure, 
and Wilkening and Anderson (1982) justify the 
legitimate expansion of task contexts to explore 
the task space. But in truth, there is simply no 
empirical basis on which to decide which task 
context is best. All task effects refer equally to 
changes in outcome measures of performance. 
Distinctions among task effects are supported 
only by intuitions about competence based 
on convention or esthetics, but not evidence. 
Consider, however, that task effects might not 
be superficial aspects of performance, but rather 
that context is always and fundamentally con-
stitutive of children's performance. 

Arguments about the purity of data have 
not fared well in other domains. Conventional 
studies of adult cognition have virtually run to 
stalemate on the question of which task's data 
best reveal the architecture of cognition. Details 
of apparent stalemates have been described for 
perception (Uttal, 1990, 1997), language and 
reading (Goldinger & Azuma, 2003; Van Orden 
& Kloos, 2005; Van Orden, Pennington, & 
Stone, 2001), and memory processes (Watkins, 
1990; Weldon, 1999). Similarly, functional neu-
roimaging of adult cognition shows signs of 
running to stalemate because subtle changes 
in task context cause cognitive functions to be 
in different parts of the brain (c.f. Cabeza & 
Nyberg, 2000). 

In sum, we have reviewed how task con-
text effects determine our laboratory pictures 
of children's knowledge. Such context effects 
demonstrate that a child's performance is an 
interaction of the child's knowledge and the 
specific task constraints within which they act. 
The solutions discussed so far hold onto the 
idea that context-free performance exists and 
should be given priority for a reduction to spe-
cific cognitive components. But these solutions 
have also, so far, led to stalemates about which 
tasks can separate context from components 
most successfully. In the next section, we dis-
cuss a more conservative solution to context 
sensitivity—one that takes context sensitivity at 
face value and accepts that context is constitu-
tive of human behavior. 



258 REACTIONS FROM THE OUTSIDE 

  

TAKING CONTEXT EFFECTS SERIOUSLY 

In the remainder of this chapter, we describe 
a path to circumvent stalemates about cogni-
tive components and task contexts and thereby 
situate connectionist and dynamical systems 
models within a unified theory. The argument 
rests on the distinction between soft-assembled 
and hard-assembled cognition introduced by 
Turvey and Carello (1981). In what follows we 
describe this distinction in more detail and 
show how soft assembly provides a new way 
to think about context and behavior. We then 
return to the issue of modeling and discuss how 
connectionist and dynamical systems models 
can complement each other and point toward a 
new unified theory. 

Soft- Versus Hard-Assembled 

Mechanisms 

Most of the research discussed so far is grounded 
in the assumption that cognitive activity is 
based on hard-assembled mechanisms. These 
mechanisms exist off-line in some form of inac-
tive or dormant state and are activated in a par-
ticular task. Going back to the balance scale 
research, a hard-assembled mechanism could 
be a child's rule about what makes a balance 
beam tip, a recurring strategy that a child pur-
sues in order to figure out the answer, or simply 
a child's knowledge about the effects of relevant 
dimensions. Hard-assembled mechanisms are 
independent of the immediate task context, they 
reveal themselves across multiple contexts, and 
are therefore discovered in context-independent 
performance. 

By contrast, soft-assembled mechanisms 
emerge in contextually constrained, collec-
tive action of the brain and body. They come 
into existence with enaction, and they are only 
realized within the immediate context of enac-
tion. An example of a soft-assembled system is 
the kinematics of a limb in a particular action. 
The mind and body in context will together cre-
ate unique kinematics, and if the movement 
is repeated, each repetition will reveal unique 
kinematics (Berkinblit, Feldman, & Fukson, 
1986; Bernstein, 1967). Looking across repeated 
movements, one sees a family resemblance, but 

no context-free mechanism exists to tie these 
movements together. Of course muscles and ten-
dons and neuropil continue to exist throughout, 
but the instantaneous play of emergent control 
is realized in the movement itself, an enacted 
limb movement that is unique in each instanta-
neous context (Turvey, 1990). 

Self-organized criticality is proposed as the 
mechanism that underlies soft-assembled 
cognitive activity (Juarrero, 1999; Turvey & 
Moreno, 2006; Van Orden, Holden, & Turvey, 
2003), a concept borrowed from physics (Bak, 
1996; Jensen, 1998). Criticality refers to a pre-
paratory state of a system, also referred to as 
critical state, that emerges immediately before 
a response occurs. This preparatory state con-
sists of several potential responses, all of which 
are contextually appropriate, although maybe 
not accurate. In the balance scale example, the 
potential responses will include the kinematics 
of indicating whether the scale will stay bal-
anced, tip to the right, or tip to the left. 

Self-organized criticality is brought about by 
local interactions among processes of the sys-
tem. Those interactions that satisfy contextual 
constraints are strengthened, and thereby recruit 
other processes to their configuration. As a result, 
these local interactions extend to the periphery 
of the body and create interdependence among 
all component processes. It is this interdepen-
dence that allows components to act together, 
to express one of a potential set of contextually 
appropriate outcomes. Thus soft assembly creates 
poised, situated, state dynamics across the brain 
and body. Immediately prior to action, the final 
contextual contingencies of the trial, including 
the stimulus, will collapse the critical state to one 
response option, the response that the child will 
enact (c.f. Jarvilehto, 1998). 

Two features make self-organized criticality 
ideal to explain context effects. First, as noted, a 
critical state is a situated state, meaning that it 
is directly linked to the immediate constraints 
of the task context. Preparative cognition stays 
in the loop, so to speak, to create continually 
updating, contextually appropriate, critical 
states ready for action. This situated cognitive 
activity ensures that the child will respond 
appropriately (though not always accurately) 
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with the response options that the experimenter 
allows. A cognitive act within an arbitrary con-
text requires a situated preparatory state to 
anticipate the situated future—for instance, a 
child poised to stay on task in novel or famil-
iar stimulus conditions and to make a balance 
scale response. Perpetually changing relations 
among context, brain, and body situate cogni-
tive activity within an oncoming task. 

Second, self-organized criticality ensures 
coordination across multiple scales of time 
and space. Even aspects of the artifactual bal-
ance scale environment change at different 
rates. Trial-by-trial changes in the distribution 
of weights occur on a relatively fast timescale, 
whereas the static laboratory backdrop changes 
on a much slower timescale. In another exam-
ple, millisecond changes in the acoustics of a 
conversation co-occur with second-by-second, 
minute-by-minute, and more drawn out scales 
of change in structure, content, contextual 
backdrop, shared knowledge, turn-taking, and 
other facets of the conversation. Likewise there 
are many scales of change entailed in the optical 
flow of a walker, from nearby bumps in the road 
to landmarks or scenery, flowing by at different 
rates depending on relative size and proxim-
ity, to meandering detours and even changes of 
destination, to name just a few. Perpetual coor-
dination of cognition is necessary because the 
environment changes perpetually on multiple 
timescales. 

The brain, the body, and other biological sys-
tems are likewise organized on hierarchies of 
timescales (Soodak & Iberall, 1987). Each hier-
archy spans faster and slower changes in neural 
activity and other physiological processes, time-
scales of change in limb and torso movements, 
and in fascia and skeletal movements. Self-
organized criticality organizes the processes 
of the brain and body to act together, simulta-
neously, across their various scales of space and 
time. This organization across the brain and 
body allows context to work simultaneously at 
all scales, to fully and subtly situate the brain 
and body within the changing environment 
(Kello, Beltz, Holden, & Van Orden, 2007). 

Local interactions among embodied pro-
cesses on different timescales weave the intrinsic 

fluctuations of the component processes into a 
coherent fabric of flux, despite inherent tenden-
cies of the different processes to vary at their 
own different rates (on their own timescales). 
Competitions among local rates of change 
strike a precise balance with globally emerging 
cooperative activity. In the precise balance of 
(or near) the critical state, they produce a long-
range correlated, aperiodic pattern of change 
or flux in behavior—a complex fractal pattern 
of long-range correlations. The aperiodic flux is 
called 1/f noise, pink noise, 1/f scaling, fractal 
time, and other names, and is a generic predic-
tion of systems in critical states. 

Evidence for Soft Assembly 

What is the evidence that human cognition 
is soft assembled? As discussed above, soft-
assembled processes have two characteristics 
that come from self-organized criticality: (1) 
pre-preparedness of critical states, rather than 
a dormant system that is merely reactive to a 
stimulus, and (2) long-term coordination and 
correlation of processes, rather than indepen-
dent and static components. We present evi-
dence next for these two features. 

Pre-prepared critical states. Findings of 
ultrafast cognition provide evidence that cog-
nition is pre-prepared. Take for example the 
results of Grill-Spector and Kanwisher (2005): 
The time it takes a participant to know that a 
picture was flashed on the screen is sufficient 
to know whether the picture showed a bird or 
a car. Perceivers apparently required no more 
time "for object categorization than for object 
detection" (Grill-Spector & Kanwisher, 2005, p. 
157). Such ultrafast cognition has been found 
even when participants are asked to categorize 
novel pictures on the basis of animacy (i.e., ani-
mate versus inanimate), an archetype of high-
level cognitive activity (Fabre-Thorpe, Delorme, 
Marlot, & Thorpe, 2001). 

Ultrafast cognition is surprising and unex-
pected from the perspective of hard-assem-
bled cognition. If cognition begins only after 
a stimulus onset, then substantial information 
processing remains to be completed prior to a 
categorization response. If cognition were one 
part of a hard-assembled chain of events that 
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unfolds across a single timescale, then some 
measurable time should pass between successful 
object detection and successful object categori-
zation. We are led to expect a longer time delay 
between stimulus and response than is observed 
in ultrafast cognition (Fabre-Thorpe et al., 2001; 
Kirchner & Thorpe, 2006). Nevertheless, ultra-
fast cognition is possible when the mind and 
body are pre-prepared to act immediately in one 
cascading lunge. Given pre-prepared cognition, 
an impulsion favoring one particular action 
trajectory can sometimes realize its action in an 
ultrafast cascade. 

Long-term Coordination. Evidence for 
long-term coordination of embodied processes 
comes from ubiquitous I// scaling in human 
performance. Recall that long-term coordi-
nation among processes that change at differ-
ent timescales predicts a pattern of long-range 
correlation or I//scaling in repeated measure-
ments of an organism's behavior. Figure 12.2 
illustrates the I// pattern in simple reaction 
time data. The time series is about 8000 tri-
als worth, collected in one sitting, for about 

3 hours. The upper right of the figure shows 
the wavy, aperiodic, fractal pattern of variation 
in reaction time from trial to trial. Below this 
trial data graph is a spectral portrait of l/f. It 
is derived by artificially parsing the aperiodic 
pattern into multiple periodic component fre-
quencies, usually sine waves. Examples of such 
sine waves are shown on the left hand side of 
the figure, the top left graph showing slow, 
lower-frequency oscillations, the left bottom 
graph showing rapid higher-frequency oscil-
lations, and the middle two graphs showing 
intermediate frequencies (y axes are adjusted 
to make the higher-frequency sine waves visi-
ble). One can artificially segregate component 
waves of variation to yield higher frequencies 
plus intermediate frequencies plus lower fre-
quency oscillations. 

Emergent properties of the fractal pattern 
dictate the relation between amplitudes and fre-
quencies. The remarkable finding is the lawful 
scaling relation between amplitudes of varia-
tion and frequencies of variation (on log scales). 
In this particular example, the relation between 
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amplitudes and frequencies has a linear slope of 
-0.94. Amplitudes of oscillations with periods 
of tens of trials, for example, find their values 
on the same line that captures amplitudes for 
oscillations across periods of hundreds or thou-
sands of trials. 

Similar patterns of fractal long-term correla-
tions are ubiquitous in physiology and human 
behavior (Bassingthwaighte, Liebovitch, & 
West, 1994; Gilden, 2001; Kello et al, 2007; 
Raichle & Gusnard, 2005; Riley & Turvey, 2002; 
van Orden et al., 2003; West, 2006). In fact, it 
begins to appear, as Machlup (1977, p. 157) sug-
gested decades ago, if you have not yet found the 
fractal pattern, you have not taken enough data, 
"you have not waited long enough. You have not 
looked at low enough frequencies." 

The initial response to I// scaling patterns 
has been a cautious reluctance to interpret 
these findings as evidence of soft assembly and 
self-organization (e.g., Wagenmakers, Farrell, 
& Ratcliff, 2005). Any complex pattern in data 
can be modeled by a linear decomposition 
into smaller patterns—that is how the spectral 
analysis works. This means that it will always 
be possible to model a particular IIf pattern of 
a particular data set (Beran, 1994). The crip-
pling paradox for hard assembly, however, is 
that a model's success becomes tied too closely 
to arbitrary details of how data are collected 
(Mandelbrot & Wallis, 1968/2002). Success 
depends too literally on the number of data 
points collected. One need only collect more 
data to, in effect, falsify the model. 

As more data are collected, variation will 
grow in amplitude because the I// pattern will 
extend outside of the limits of sampled data 
points, and a larger sample will pick up more 
of the scaling relation. A longer data set reveals 
more of the lower frequencies, frequencies that 
are associated with much larger amplitudes of 
variation. So variation will grow in the larger 
sample. Consequently, the hard-assembled 
model must invent additional new components 
every time a longer data set is collected, out to 
natural limits of data collection (van Orden, 
Holden, & Turvey, 2005). As a consequence, no 
successful hard-assembled alternative has yet 
been put forward (Thornton & Gilden, 2005). 

In addition, success of mimicking a I//pro-
cess depends too literally on the particular 
kind of measurement taken for the observed 
behavior. One need only collect different kinds 
of measured values in the same behavior to, in 
effect, falsify the model. For example, a spoken 
word can be measured in parsing its acoustic 
spectrum into frequency bins and measuring 
the spectral intensity of the component fre-
quency bins (300 Hz wide, evenly spaced up to 
13.5 kHz, in Kello, Anderson, Holden, & Van 
Orden, 2008). If this same word is repeatedly 
spoken and an acoustic spectrum is computed 
for each repetition, then the repeatedly mea-
sured intensity values of the component fre-
quency bins will all fluctuate in the pattern of I// 
scaling. Thus each arbitrary bin, 90 total, can be 
equated with a separate stream of variation, and 
each varies in the pattern of I//scaling. Thus a 
hard-assembled model must invent 90 distinct 
sources of I//scaling, one for every repeatedly 
measured value that is examined (see also Kello 
et al., 2007; Wijnants, Bosnian, Hasselman, & 
Cox, 2007). 

A hard-assembled model must invent a 
source of I// scaling for each measured value 
that fluctuates in the pattern of I//scaling. Yet 
I//scaling may extend outside the sampled val-
ues under consideration and appear in an indef-
inite set of different measured values that have 
not yet been considered. The absurdity descends 
from the idea that variation in measured val-
ues comes from independent hard-assembled 
sources, that measured values are transparent to 
causal properties of the component sources. The 
consequent paradoxical, endless additions to 
ad hoc models also stem from thinking that var-
iation in measured values can be equated with 
components of cognition—that one's measured 
values are context-free and thereby transparent 
to state variables of cognitive components. 

The paradoxes disappear, however, once we 
allow that cognitive activities are soft assembled. 
In other words, one moves past the paradox in 
recognizing that measured values are emergent 
products of dynamic linkages among component 
systems, including the system that comprises 
the context of measurement (Flach, Dekker, & 
Stappers, 2007; Turvey & Moreno, 2006). In soft 
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assembly, context is causally entwined with the 
measurement of behavior (Van Orden, Kello, 
& Holden, in press). Consequently, measured 
outcomes differ in quality from the embodied 
processes from which they emerge. On-coming 
contingent details of task demands and imme-
diate task contexts are constitutive of behav-
ior. Contingent details, as fluid changes in 
constraints, change the interaction among the 
component processes from which behavior 
emerges. 

Context Constrains the Body 

We have argued in previous sections that con-
text effects are not simple add-ons to so-called 
real effects. Instead, pervasive context effects 
indicate different design principles altogether. 
This argument expands upon a famous descrip-
tion of development by connectionists—namely, 
that development entails "interactions all the 
way down" (Elman et al, 1996). Elman and col-
leagues use a newly hatched duck to illustrate 
how preparative constraints set up the poten-
tial for imprinting that is subsequently deter-
mined by the interaction with the environment. 
Beyond nature and nurture, a duck, or a child, is 
pre-prepared for developmental milestones, and 
the milestones are realized in interactions with 
the environment. Development reflects local 
details of the environment as a consequence. 
Likewise cognition itself is preparative and real-
ized in local interactions with the environment 
(Turvey & Fitzpatrick, 1993). 

Currently, dynamical systems and con-
nectionist models address context effects by 
accounting for children's performance in more 
than one context, usually by additions to their 
architectures. For example, the dynamical sys-
tems model of Van Rijn and colleagues (Van 
Rijn et al., 2003) simulates rules I-IV, as well as 
the torque effect described by Ferretti and col-
leagues (e.g., Ferretti et al., 1985). McClelland's 
(1989) connectionist model can account for a dif-
ference in salience between weight and distance 
that could explain the discrepancy in perfor-
mance when children are given propriocep-
tive information about weight versus distance. 
These attempts are insufficient in the present 
light, however. And this not only because they 

fail to capture the addition rules proposed by 
Wilkening and Anderson (1982) or the idiosyn-
cratic rules discussed by Kliman (1986). Even 
if a model could be rigged to account for chil-
dren's behavior in all the discussed contexts, it 
will not anticipate the inevitable next round of 
context effects. 

Context effects are not exhausted at the level 
of the larger task contexts illustrated in the first 
part of this chapter. Context effects permeate 
the brain and body well below the level of trial 
judgments in particular tasks. That is to say, the 
context effects discussed in previous sections 
are just tips of icebergs, so to speak, and soft-
assembled icebergs are context sensitive all the 
way down. Below the iceberg tips, each instanta-
neous muscle flex and each pattern of rhythmic 
cortical firing creates a context for every other 
muscle flex and every other pattern of neural 
firing (c.f. Belen'kii, Gurfinkel, & Pal'tsev, 1967; 
Freeman, Holmes, Burke, & Vanhatalo, 2003; 
Marsden, Merton, & Morton, 1983; Raichle & 
Gusnard, 2005). 

Take, for example, the coordination of speech 
after an unexpected pull to a person's jaw (Kelso, 
Tuller, Vatikiotis-Bateson, & Fowler, 1984; 
Shaiman & Gracco, 2002). Articulation com-
pensates with movements in the upper and lower 
lips to preserve the flow of speech such that a lis-
tener cannot distinguish between perturbed and 
unperturbed speech. The compensation entails 
cortical interactions, the fluid matrix of neuro-
muscular interactions in the lips, modulation of 
the force of breath and the pace of respiration, 
and all else that makes up speech. Most impor-
tant, the fluid compensation stays within the 
limits of contextual constraints. Context in this 
case equals the unfolding of a spoken word as co-
articulated speech. This context of constraints, 
specific to the particular co-articulation, exists 
in a particular configuration at the point at 
which the experimenter perturbs the jaw. This 
configuration constrains the fluid compensa-
tion, limiting potential compensations to those 
that insure intelligibility, all the way down. 

The example illustrates how global and local 
context are embodied in local interactions as 
limits (or constraints) on cascading interactions 
among excitable neuromuscular media. These 
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limits are demonstrated widely in motor coor-
dination and also in the neuroscience of per-
ception and action. In laboratory experiments, 
brain and body demonstrably reconfigure, in an 
instant, to accommodate local changes in the 
task environment. For example, a slight change 
in a motor coordination task—increasing the 
stimulus pace of the coordinated movements— 
leads to a new pattern in behavior in a virtually 
instantaneous phase transition across brain and 
body (Kelso, 1995). To accomplish this, active 
constraints must anticipate the phase transi-
tion, and must define a potential set of changes 
in concurrent interactions among excitable 
media. Active constraints maintain perpet-
ually updated, context-specific potential sets 
of actions, which anticipate which actions are 
appropriate, necessary, and possible. Human 
and nonhuman animals prefigure how to act to 
satisfy their contexts of action. They must do so 
to keep apace of perpetually changing relations 
between actors and environments. In effect, 
brain, body, and context combine constraints to 
poise the actor perpetually ready for action. 

IMPLICATIONS FOR MODELING________  

Contemporary models do not usually repre-
sent context as a source of constraints. Context 
is usually implemented as activation or some 
other causal force. The pace at which activation 
is updated defines the primary timescale of a 
model's dynamics, and activations from context 
and other sources are usually integrated on this 
single timescale. A typical connectionist model 
will also include a second timescale of change 
in connection weights, but the model is always 
limited to a definite (usually small) number of 
timescales. This is true of dynamical systems 
models as well if they equate parameters and 
variables with hard-assembled mechanisms. 
Parameters and variables amount to a few 
explicit timescales of hard-assembled dynam-
ics. However, for all their strengths, contempo-
rary models grossly underestimate the number 
of temporal scales on which cognitive activity is 
actually assembled. 

Actual   cognitive   activity  unfolds   across 
an   indefinite   number   of  timescales   in   a 

coordinated fractal pattern that hard assembly 
does not anticipate. We have explained this fact 
keeping in mind a picture of cognition that has 
a primary preparative function (c.f. Raichle & 
Gusnard, 2005). In the concrete terms of a lab-
oratory experiment, cognition situates a person 
to participate. Contemporary models do not 
capture the situated behavior of participants 
and thereby fail to reveal the situated mecha-
nisms of behavior. Instead, the most widely 
practiced modeling strategies have emphasized 
regularities across participants, central tenden-
cies in data, or gross features of developmental 
change. These phenomena, though legitimate, 
do not reliably define a mechanistic level of 
explanation. 

A different target for theory, modeling, and 
explanation is a level of emergent control, above 
the component details of enacted mechanisms. 
This strategic reduction captures causal prop-
erties of systems that are not transparent in 
component causes. A theory of emergent con-
trol makes progress so long as there actually 
are general principles of control to be discov-
ered. This point about general principles takes 
a lesson from dynamical systems models. The 
cusp catastrophe, for example, is a very gen-
eral account of control and qualitative change 
(Gilmore, 1993). And the search for empirical 
flags of the cusp catastrophe illustrates how 
one goes about establishing that cusp princi-
ples of control actually apply (van der Maas & 
Molenaar, 1992). However, if one grounds the 
ensuing model in hard-assembled components, 
then the paradoxes we have described come 
along for the ride. 

At the level of emergent control, task con-
text effects are equated with task constraints 
in a model's control parameters (Van Orden, 
Holden, Podgornik, & Aitchison, 1999). A con-
trol parameter is a ratio among constraints. 
Values of the ratio will favor one or another of 
the probabilistic outcomes. Control parameters 
are most often associated with dynamical sys-
tems models, but they are also discussed in the 
context of connectionist models (Kello, 2003; 
Kello, Sibley, & Plaut, 2005; Rueckl, 2002). For 
example, the ratio of weight to distance trials 
in a balance scale task could be conceived as a 
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control parameter. The values of the ratio that 
favor distance trials yield different rules than 
the values of the ratio that favor weight trials. In 
a connectionist model, the ratio of weight ver-
sus distance trials is made explicit in the train-
ing regime and implicit in the weight matrix. 
In a dynamical systems model, this ratio could 
appear explicitly as a parameter in a system of 
equations. In both cases, the ratio controls com-
peting outcomes that live on opposite sides of a 
critical value. The critical value defines the point 
of equally distributed constraints, an imaginary 
point of no decision, a state of criticality, and a 
precisely balanced tug of war between equally 
compelling rules. 

This is a different view of modeling and con-
trol compared to previous schools of psychol-
ogy. Models do not stand outside of history, 
in the sense of a cognitive architecture, except 
in the principles of their design. Most impor-
tant, they do not capture phenomena outside of 
history. Models capture and make explicit the 
control of behavior emerging in time. Previous 
schools of psychology relegated control of 
behavior to relatively static loci in the environ-
ment (behaviorism) or the organism (cognitiv-
ism). The new unified theory will locate control 
in the perpetually changing interaction of child 
and environment. 

CONCLUSION _____________________ 

Hard-assembled cognition must inevitably treat 
context effects after the fact or as methodolog-
ical problems of experimental control. Context 
effects are either something to be explained 
later, once the basic architecture is in place, or 
something that undermines data that could 
otherwise be equated with cognitive compo-
nents. Nonetheless, cognitive performance is 
unduly dependent on the particulars of con-
text. A unified theory of cognition and cogni-
tive development must find its beginnings in the 
particulars of context sensitive phenomena. As 
for modeling, mimicking the control structure 
of human behavior captures the available causal 
basis of behavior. Control of behavior, even 
qualitative changes in control structure, can be 
simulated in both connectionist and dynamical 

system models. Therefore, a unified theory of 
soft-assembled cognition and development 
may embrace both dynamic systems and con-
nectionist models. These attractive possibilities, 
perhaps inevitabilities, can be achieved by dis-
carding hard assembly, by accepting that per-
formance is not transparent to hard-assembled 
competence. Fluid soft assembly of cognition 
is the essential human competence and per-
formance is transparent to this competence. 
Competence as context sensitivity and perfor-
mance as sensitivity to context are two sides of 
the same coin. 
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