Bruce Jayne

Bibliography on the Physiology & Biomechanics of Cycling Compiled by Emily Schoettmer (2006)

Ahlquist, L. E., Bassett, D. R. J., Sufit, R., Nagle, F. J. and Thomas, D. P. (1992). The effect of pedaling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cycling exercise. Eur. J. Appl. Physiol. 65, 360-4.

Akima, H., Kinugasa, R. and Kuno, S. (2005). Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int. J. Sports Med. 26, 245-52.

Albertus, Y., Tucker, R., St Clair Gibson, A., Lambert, E. V., Hampson, D. B. and Noakes, T. D. (2005). Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med. Sci. Sports Exerc. 37, 461-8.

Atkinson, G., Davison, R., Jeukendrup, A. and Passfield, L. (2003). Science and cycling: current knowledge and future directions for research. J. Sports Sci. 21, 767-87.

Atkinson, G., Todd, C., Reilly, T. and Waterhouse, J. (2005). Diurnal variation in cycling performance: influence of warm-up. J. Sports Sci. 23, 321-9.

Attaway, R., Bartoli, W. P., Pate, R. R. and Davis, J. M. (1992). Physiologic and perceptual responses to exercise on a new cycle ergometer. Canadian Journal of Sport Sciences = Journal Canadien Des Sciences Du Sport 17, 56-9.

Balmer, J., Potter, C. R., Bird, S. R. and Davison, R. C. R. (2005). Age-related changes in maximal power and maximal heart rate recorded during a ramped test in 114 cyclists age 15-73 years. Journal of Aging and Physical Activity 13, 75-86.

Barlow, K., Weltman, A., Schurrer, R. and Henritze, J. (1985). Prediction of maximal effort bicycle ergometer endurance performance. Int. J. Sports Med. 6, 190-6.

Bearden, S. E. and Moffatt, R. J. (2001). Leg electromyography and the VO2-power relationship during bicycle ergometry. Med. Sci. Sports Exerc. 33, 1241-5.

Bediz, C. S., Gokbel, H., Kara, M., Ucok, K., Cikrikci, E. and Ergene, N. (1998). Comparison of the aerobic contributions to Wingate anaerobic tests performed with two different loads. The Journal of Sports Medicine and Physical Fitness 38, 30-4.

Bell, G. J. and Wenger, H. A. (1988). The effect of one-legged sprint training on intramuscular pH and nonbicarbonate buffering capacity. Eur. J. Appl. Physiol. 58, 158-64.

Benoit, H., Busso, T., Prieur, F., Castells, J., Freyssenet, D., Lacour, J. R., Denis, C. and Geyssant, A. (1997). Oxygen uptake during submaximal incremental and constant work load exercises in hypoxia. Int. J. Sports Med. 18, 101-5.

Bentley, D. J., Vleck, V. E. and Millet, G. P. (2005). The isocapnic buffering phase and mechanical efficiency: relationship to cycle time trial performance of short and long duration. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee 30, 46-60.

Bernard, T., Vercruyssen, F., Grego, F., Hausswirth, C., Lepers, R., Vallier, J.-M. and Brisswalter, J. (2003). Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes. Br. J. Sports Med. 37, 154-8; discussion 159.

Bertucci, W., Duc, S., Villerius, V. and Grappe, F. (2005). Validity and reliability of the Axiom PowerTrain cycle ergometer when compared with an SRM powermeter. Int. J. Sports Med. 26, 59-65.

Bertucci, W., Grappe, F., Girard, A., Betik, A. and Rouillon, J. D. (2005). Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J. Biomech. 38, 1003-10.

Billat, V. L., Mille-Hamard, L., Petit, B. and Koralsztein, J. P. (1999). The role of cadence on the VO2 slow component in cycling and running in triathletes. Int. J. Sports Med. 20, 429-37.

Billaut, F., Basset, F. A. and Falgairette, G. (2005). Muscle coordination changes during intermittent cycling sprints. Neurosci. Lett. 380, 265-9.

Biswas, D. A. and Kher, J. R. (1996). Cardio respiratory changes associated with graded exercise and determination of aerobic power in male medical students (18-19    years). Indian J. Physiol. Pharmacol. 40, 79-82.

Blannin, A. K., Chatwin, L. J., Cave, R. and Gleeson, M. (1996). Effects of submaximal cycling and long-term endurance training on neutrophil phagocytic activity in middle aged men. Br. J. Sports Med. 30, 125-9.

Borg, G., Ljunggren, G. and Ceci, R. (1985). The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur. J. Appl. Physiol. 54, 343-9.

Borghouts, L. B., Backx, K., Mensink, M. F. and Keizer, H. A. (1999). Effect of training intensity on insulin sensitivity as evaluated by insulin tolerance test. Eur. J. Appl. Physiol. 80, 461-6.

Boulay, M. R., Hamel, P., Simoneau, J. A., Lortie, G., Prud'homme, D. and Bouchard, C. (1984). A test of aerobic capacity: description and reliability. Canadian Journal of Applied Sport Sciences. Journal Canadien Des Sciences Appliquees Au Sport 9, 122-6.

Bovens, A. M., van Baak, M. A., Vrencken, J. G., Wijnen, J. A., Saris, W. H. and Verstappen, F. T. (1993). Maximal aerobic power in cycle ergometry in middle-aged men and women, active in sports, in relation to age and physical activity. Int. J. Sports Med. 14, 66-71.

Boyd, T., Hull, M. L. and Wootten, D. (1996). An improved accuracy six-load component pedal dynamometer for cycling. J. Biomech. 29, 1105-10.

Boyd, T. F., Neptune, R. R. and Hull, M. L. (1997). Pedal and knee loads using a multi-degree-of-freedom pedal platform in cycling. J. Biomech. 30, 505-11.

Braakhekke, J. P., Stegeman, D. F. and Joosten, E. M. (1989). Increase in median power frequency of the myoelectric signal in pathological fatigue. Electroencephalogr. Clin. Neurophysiol. 73, 151-6.

Bressel, E. and Cronin, J. (2005). Bicycle seat interface pressure: reliability, validity, and influence of hand position and workload. J. Biomech. 38, 1325-31.

Brisswalter, J., Hausswirth, C., Smith, D., Vercruyssen, F. and Vallier, J. M. (2000). Energetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise duration. Int. J. Sports Med. 21, 60-4.

Broker, J. P. and Gregor, R. J. (1994). Mechanical energy management in cycling: source relations and energy expenditure. Med. Sci. Sports Exerc. 26, 64-74.

Broker, J. P., Kyle, C. R. and Burke, E. R. (1999). Racing cyclist power requirements in the 4000-m individual and team pursuits. Med. Sci. Sports Exerc. 31, 1677-85.

Brown, A. C., Macrae, H. S. H. and Turner, N. S. (2004). Tricarboxylic-acid-cycle intermediates and cycle endurance capacity. International Journal of Sport Nutrition and Exercise Metabolism 14, 720-9.

Bruhwiler, P. A., Ducas, C., Huber, R. and Bishop, P. A. (2004). Bicycle helmet ventilation and comfort angle dependence. European Journal of Applied Physiology 92, 698-701.

Bryner, R. W., Hornsby, W. G., Chetlin, R., Ullrich, I. H. and Yeater, R. A. (1998). Effect of lactate consumption on exercise performance. The Journal of Sports Medicine and Physical Fitness 38, 116-23.

Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J. F., Bradwell, S. N. and Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 98, 1985-90.

Burnley, M., Doust, J. H. and Jones, A. M. (2005). Effects of prior warm-up regime on severe-intensity cycling performance. Med. Sci. Sports Exerc. 37, 838-45.

Camus, G., Atchou, G., Bruckner, J. C., Giezendanner, D. and di Prampero, P. E. (1988). Slow upward drift of VO2 during constant-load cycling in untrained subjects. Eur. J. Appl. Physiol. 58, 197-202.

Caputo, F. and Denadai, B. S. (2004). Effects of aerobic endurance training status and specificity on oxygen uptake kinetics during maximal exercise. European Journal of Applied Physiology 93, 87-95.

Caputo, F., Mello, M. T. and Denadai, B. S. (2003). Oxygen uptake kinetics and time to exhaustion in cycling and running: a comparison between trained and untrained subjects. Arch. Physiol. Biochem. 111, 461-6.

Carta, P., Aru, G., Barbieri, M. T. and Mele, M. (1991). [Bicycle ergometry exercise tests: a comparison between 3 protocols with an increasing load]. La Medicina Del Lavoro 82, 56-64.

Casaburi, R., Whipp, B. J., Wasserman, K. and Koyal, S. N. (1978). Ventilatory and gas exchange responses to cycling with sinusoidally varying pedal rate. J. Appl. Physiol. 44, 97-103.

Chavarren, J. and Calbet, J. A. (1999). Cycling efficiency and pedalling frequency in road cyclists. Eur. J. Appl. Physiol. 80, 555-63.

Chicharro, J. L., Lucia, A., Vaquero, A. F. and Perez, M. (1998). Azelastine does not adversely affect aerobic performance. The Journal of Sports Medicine and Physical Fitness 38, 266-71.

Christensen, C. L. and Ruhling, R. O. (1983). Physiological and perceptual responses of women to equivalent power outputs on the bicycle ergometer and treadmill. The Journal of Sports Medicine and Physical Fitness 23, 436-44.

Coast, J. R., Cox, R. H. and Welch, H. G. (1986). Optimal pedalling rate in prolonged bouts of cycle ergometry. Med. Sci. Sports Exerc. 18, 225-30.

Coast, J. R. and Welch, H. G. (1985). Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur. J. Appl. Physiol. 53, 339-42.

Connes, P., Perrey, S., Varray, A., Prefaut, C. and Caillaud, C. (2003). Faster oxygen uptake kinetics at the onset of submaximal cycling exercise following 4 weeks recombinant human erythropoietin (r-HuEPO) treatment. Pflugers Archiv : European Journal of Physiology 447, 231-8.

Cooke, W. H., Grandjean, P. W. and Barnes, W. S. (1995). Effect of oral creatine supplementation on power output and fatigue during bicycle ergometry. J. Appl. Physiol. 78, 670-3.

Cordova, A. and Navas, F. J. (1998). Effect of training on zinc metabolism: changes in serum and sweat zinc concentrations in sportsmen. Annals of Nutrition & Metabolism 42, 274-82.

Coyle, E. F. (2005). Improved muscular efficiency displayed as Tour de France champion matures. J. Appl. Physiol. 98, 2191-6.

Coyle, E. F., Sidossis, L. S., Horowitz, J. F. and Beltz, J. D. (1992). Cycling efficiency is related to the percentage of type I muscle fibers. Med. Sci. Sports Exerc. 24, 782-8.

Croisant, P. T. and Boileau, R. A. (1984). Effect of pedal rate, brake load and power on metabolic responses to bicycle ergometer work. Ergonomics 27, 691-700.

Czarnowski, D. and Gorski, J. (1991). Sweat ammonia excretion during submaximal cycling exercise. J. Appl. Physiol. 70, 371-4.

Davis, R. R. and Hull, M. L. (1981). Measurement of pedal loading in bicycling: II. Analysis and results. J. Biomech. 14, 857-72.

Dawson, B., Straton, S. and Randall, N. (1996). Oxygen consumption during recovery from prolonged submaximal cycling below the anaerobic threshold. The Journal of Sports Medicine and Physical Fitness 36, 77-84.

de Groot, G., Welbergen, E., Clijsen, L., Clarijs, J., Cabri, J. and Antonis, J. (1994). Power, muscular work, and external forces in cycling. Ergonomics 37, 31-42.

Denadai, B. S., Figuera, T. R., Favaro, O. R. P. and Goncalves, M. (2004). Effect of the aerobic capacity on the validity of the anaerobic threshold for determination of the maximal lactate steady state in cycling. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E 37, 1551-6.

Dengel, D. R., Weyand, P. G., Black, D. M. and Cureton, K. J. (1992). Effect of varying levels of hypohydration on responses during submaximal cycling. Med. Sci. Sports Exerc. 24, 1096-101.

Diaz, F. J., Hagan, R. D., Wright, J. E. and Horvath, S. M. (1978). Maximal and submaximal exercise in different positions. Medicine and Science in Sports 10, 214-7.

Duc, S., Betik, A.-C. and Grappe, F. (2005). EMG activity does not change during a time trial in competitive cyclists. Int. J. Sports Med. 26, 145-50.

Era, P., Schroll, M., Hagerup, L. and Schultz-Larsen Jurgensen, K. (2001). Changes in bicycle ergometer test performance and survival in men and women from 50 to 60 and from 70 to 80 years of age: two longitudinal studies in the Glostrup (Denmark) population. Gerontology 47, 136-44.

Ericson, M. (1986). On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scand. J. Rehabil. Med. Suppl. 16, 1-43.

Ericson, M. O., Bratt, A., Nisell, R., Arborelius, U. P. and Ekholm, J. (1986). Power output and work in different muscle groups during ergometer cycling. Eur. J. Appl. Physiol. 55, 229-35.

Esbjornsson, M., Sylven, C., Holm, I. and Jansson, E. (1993). Fast twitch fibres may predict anaerobic performance in both females and males. Int. J. Sports Med. 14, 257-63.

Faria, E. W., Parker, D. L. and Faria, I. E. (2005). The science of cycling: factors affecting performance - part 2. Sports Med 35, 313-37.

Faria, E. W., Parker, D. L. and Faria, I. E. (2005). The science of cycling: physiology and training - part 1. Sports Med 35, 285-312.

Faria, I. and Frankel, M. (1977). Anthropometric and physiologic profile of a cyclist -- age 70. Medicine and Science in Sports 9, 118-21.

Farina, D., Macaluso, A., Ferguson, R. A. and De Vito, G. (2004). Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. J. Appl. Physiol. 97, 2035-41.

Faye, J., Fall, A., Seck, D., Badji, L., Faye, E. M. and Cisse, F. (2002). [Bicycle test: measure of anaerobic power, heart rate and blood lactic acid]. Dakar Med. 47, 239-43.

Fornusek, C. and Davis, G. M. (2004). Maximizing muscle force via low-cadence functional electrical stimulation cycling. Journal of Rehabilitation Medicine : Official Journal of the UEMS European Board of Physical and Rehabilitation Medicine 36, 232-7.

Foss, O. and Hallen, J. (2005). Cadence and performance in elite cyclists. European Journal of Applied Physiology 93, 453-62.

Foster, C., Hoyos, J., Earnest, C. and Lucia, A. (2005). Regulation of energy expenditure during prolonged athletic competition. Med. Sci. Sports Exerc. 37, 670-5.

Fulco, C. S., Kambis, K. W., Friedlander, A. L., Rock, P. B., Muza, S. R. and Cymerman, A. (2005). Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4,300-m altitude. J. Appl. Physiol. 99, 867-76.

Gamet, D., Duchene, J., Garapon-Bar, C. and Goubel, F. (1993). Surface electromyogram power spectrum in human quadriceps muscle during incremental exercise. J. Appl. Physiol. 74, 2704-10.

Gardner, A. S., Stephens, S., Martin, D. T., Lawton, E., Lee, H. and Jenkins, D. (2004). Accuracy of SRM and power tap power monitoring systems for bicycling. Med. Sci. Sports Exerc. 36, 1252-8.

Gardner, A. W., Poehlman, E. T. and Corrigan, D. L. (1989). Effect of endurance training on gross energy expenditure during exercise. Human Biology; an International Record of Research 61, 559-69.

Gastin, P., Lawson, D., Hargreaves, M., Carey, M. and Fairweather, I. (1991). Variable resistance loadings in anaerobic power testing. Int. J. Sports Med. 12, 513-8.

Gleeson, M., Blannin, A. K., Zhu, B., Brooks, S. and Cave, R. (1995). Cardiorespiratory, hormonal and haematological responses to submaximal cycling performed 2 days after eccentric or concentric exercise bouts. J. Sports Sci. 13, 471-9.

Gnehm, P., Reichenbach, S., Altpeter, E., Widmer, H. and Hoppeler, H. (1997). Influence of different racing positions on metabolic cost in elite cyclists. Med. Sci. Sports Exerc. 29, 818-23.

Gonzalez, H. and Hull, M. L. (1989). Multivariable optimization of cycling biomechanics. J. Biomech. 22, 1151-61.

Gore, C. J., Hahn, A. G., Aughey, R. J., Martin, D. T., Ashenden, M. J., Clark, S. A., Garnham, A. P., Roberts, A. D., Slater, G. J. and McKenna, M. J. (2001). Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol. Scand. 173, 275-86.

Gotshall, R. W., Bauer, T. A. and Fahrner, S. L. (1996). Cycling cadence alters exercise hemodynamics. Int. J. Sports Med. 17, 17-21.

Gottschall, J. S. and Palmer, B. M. (2002). The acute effects of prior cycling cadence on running performance and kinematics. Med. Sci. Sports Exerc. 34, 1518-22.

Grappe, F., Candau, R., Busso, T. and Rouillon, J. D. (1998). Effect of cycling position on ventilatory and metabolic variables. Int. J. Sports Med. 19, 336-41.

Green, H. J., Roy, B., Grant, S., Hughson, R., Burnett, M., Otto, C., Pipe, A., McKenzie, D. and Johnson, M. (2000). Increases in submaximal cycling efficiency mediated by altitude acclimatization. J. Appl. Physiol. 89, 1189-97.

Green, J. M., McLester, J. R., Crews, T. R., Wickwire, P. J., Pritchett, R. C. and Redden, A. (2005). RPE-lactate dissociation during extended cycling. European Journal of Applied Physiology 94, 145-50.

Gregersen, C. S. and Hull, M. L. (2003). Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the    shank/foot and the effect of simplifying assumptions. J. Biomech. 36, 803-13.

Grego, F., Vallier, J.-M., Collardeau, M., Rousseu, C., Cremieux, J. and Brisswalter, J. (2005). Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise. Int. J. Sports Med. 26, 27-33.

Gregor, R. J., Komi, P. V. and Jarvinen, M. (1987). Achilles tendon forces during cycling. Int. J. Sports Med. 8 Suppl 1, 9-14.

Gregor, S. M., Perell, K. L., Rushatakankovit, S., Miyamoto, E., Muffoletto, R. and Gregor, R. J. (2002). Lower extremity general muscle moment patterns in healthy individuals during recumbent cycling. Clin Biomech (Bristol, Avon) 17, 123-9.

Hakansson, N. A. and Hull, M. L. (2005). Functional roles of the leg muscles when pedaling in the recumbent versus the upright position. J. Biomech. Eng. 127, 301-10.

Hallen, J., Gullestad, L. and Sejersted, O. M. (1994). K+ shifts of skeletal muscle during stepwise bicycle exercise with and without beta-adrenoceptor blockade. The Journal of Physiology 477 ( Pt 1), 149-59.

Hansen, E. A., Andersen, J. L., Nielsen, J. S. and Sjogaard, G. (2002). Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol. Scand. 176, 185-94.

Hansen, E. A., Jorgensen, L. V., Jensen, K., Fregly, B. J. and Sjogaard, G. (2002). Crank inertial load affects freely chosen pedal rate during cycling. J. Biomech. 35, 277-85.

Heil, D. P. (2001). Body mass scaling of projected frontal area in competitive cyclists. European Journal of Applied Physiology 85, 358-66.

Heil, D. P. (2002). Body mass scaling of frontal area in competitive cyclists not using aero-handlebars. European Journal of Applied Physiology 87, 520-8.

Heil, D. P. (2005). Body size as a determinant of the 1-h cycling record at sea level and altitude. European Journal of Applied Physiology 93, 547-54.

Heil, D. P., Murphy, O. F., Mattingly, A. R. and Higginson, B. K. (2001). Prediction of uphill time-trial bicycling performance in humans with a scaling-derived protocol. European Journal of Applied Physiology 85, 374-82.

Helal, J. N., Guezennec, C. Y. and Goubel, F. (1987). The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. Eur. J. Appl. Physiol. 56, 643-9.

Hickson, R. C., Kanakis, C. J., Davis, J. R., Moore, A. M. and Rich, S. (1982). Reduced training duration effects on aerobic power, endurance, and cardiac growth. J. Appl. Physiol. 53, 225-9.

Hintzy, F., Belli, A., Grappe, F. and Rouillon, J. D. (1999). Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans. Eur. J. Appl. Physiol. 79, 426-32.

Hintzy, F., Groslambert, A., Dugue, B., Rouillon, J. D. and Belli, A. (2001). Does endurance or sprint training influence the perception of the optimal pedalling rate during submaximal cycling exercise? Int. J. Sports Med. 22, 513-6.

Hintzy-Cloutier, F., Zameziati, K. and Belli, A. (2003). Influence of the base-line determination on work efficiency during submaximal cycling. The Journal of Sports Medicine and Physical Fitness 43, 51-6.

Hodges, A. N. H., Lynn, B. M., Bula, J. E., Donaldson, M. G., Dagenais, M. O. and McKenzie, D. C. (2003). Effects of pseudoephedrine on maximal cycling power and submaximal cycling efficiency. Med. Sci. Sports Exerc. 35, 1316-9.

Hogan, M. C. and Welch, H. G. (1984). Effect of varied lactate levels on bicycle ergometer performance. J. Appl. Physiol. 57, 507-13.

Hopkins, S. R. and McKenzie, D. C. (1994). The laboratory assessment of endurance performance in cyclists. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee 19, 266-74.

Hoppeler, H., Howald, H., Conley, K., Lindstedt, S. L., Claassen, H., Vock, P. and Weibel, E. R. (1985). Endurance training in humans: aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 59, 320-7.

Housh, D. J., Housh, T. J. and Bauge, S. M. (1989). The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics 32, 997-1004.

Houtman, S., Oeseburg, B. and Hopman, M. T. (1999). Non-invasive cardiac output assessment during moderate exercise: pulse contour compared with CO2 rebreathing. Clin Physiol 19, 230-7.

Hsu, A. R., Hagobian, T. A., Jacobs, K. A., Attallah, H. and Friedlander, A. L. (2005). Effects of heat removal through the hand on metabolism and performance during cycling exercise in the heat. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee 30, 87-104.

Hug, F., Bendahan, D., Le Fur, Y., Cozzone, P. J. and Grelot, L. (2005). Metabolic recovery in professional road cyclists: a 31P-MRS study. Med. Sci. Sports Exerc. 37, 846-52.

Hull, M. L. and Davis, R. R. (1981). Measurement of pedal loading in bicycling: I. Instrumentation. J. Biomech. 14, 843-56.

Hull, M. L. and Jorge, M. (1985). A method for biomechanical analysis of bicycle pedalling. J. Biomech. 18, 631-44.

Hull, M. L., Kautz, S. and Beard, A. (1991). An angular velocity profile in cycling derived from mechanical energy analysis. J. Biomech. 24, 577-86.

Hull, M. L., Williams, M., Williams, K. and Kautz, S. (1992). Physiological response to cycling with both circular and noncircular chainrings. Med. Sci. Sports Exerc. 24, 1114-22.

Inbar, O., Dotan, R., Trousil, T. and Dvir, Z. (1983). The effect of bicycle crank-length variation upon power performance. Ergonomics 26, 1139-46.

Ishida, R. and Okada, M. (1997). [Spectrum analysis of heart rate variability for the assessment of training effects]. Rinsho Byori. The Japanese Journal of Clinical Pathology 45, 685-8.

Jameson, C. and Ring, C. (2000). Contributions of local and central sensations to the perception of exertion during cycling: effects of work rate and cadence. J. Sports Sci. 18, 291-8.

Jeukendrup, A. E., Craig, N. P. and Hawley, J. A. (2000). The bioenergetics of World Class Cycling. Journal of Science and Medicine in Sport / Sports Medicine Australia 3, 414-33.

Jeukendrup, A. E. and Martin, J. (2001). Improving cycling performance: how should we spend our time and money. Sports Med 31, 559-69.

Jorge, M. and Hull, M. L. (1986). Analysis of EMG measurements during bicycle pedalling. J. Biomech. 19, 683-94.

Kaljumae, U., Hanninen, O. and Airaksinen, O. (1994). Knee extensor fatigability and strength after bicycle ergometer training. Arch. Phys. Med. Rehabil. 75, 564-7.

Kime, R., Im, J., Moser, D., Lin, Y., Nioka, S., Katsumura, T. and Chance, B. (2005). Reduced heterogeneity of muscle deoxygenation during heavy bicycle exercise. Med. Sci. Sports Exerc. 37, 412-7.

Koppo, K., Whipp, B. J., Jones, A. M., Aeyels, D. and Bouckaert, J. (2004). Overshoot in VO2 following the onset of moderate-intensity cycle exercise in trained cyclists. European Journal of Applied Physiology 93, 366-73.

Laursen, P. B., Shing, C. M. and Jenkins, D. G. (2003). Reproducibility of a laboratory-based 40-km cycle time-trial on a stationary wind-trainer in highly trained cyclists. Int. J. Sports Med. 24, 481-5.

Laursen, P. B., Shing, C. M., Peake, J. M., Coombes, J. S. and Jenkins, D. G. (2005). Influence of high-intensity interval training on adaptations in well-trained cyclists. Journal of Strength and Conditioning Research / National Strength & Conditioning Association 19, 527-33.

LaVoie, N., Dallaire, J., Brayne, S. and Barrett, D. (1984). Anaerobic testing using the Wingate and Evans-Quinney protocols with and without toe stirrups. Canadian Journal of Applied Sport Sciences. Journal Canadien Des Sciences Appliquees Au Sport 9, 1-5.

Lepers, R., Millet, G. Y. and Maffiuletti, N. A. (2001). Effect of cycling cadence on contractile and neural properties of knee extensors. Med. Sci. Sports Exerc. 33, 1882-8.

Linossier, M. T., Dormois, D., Perier, C., Frey, J., Geyssant, A. and Denis, C. (1997). Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiol. Scand. 161, 439-45.

Ljunggren, G., Ceci, R. and Karlsson, J. (1987). Prolonged exercise at a constant load on a bicycle ergometer: ratings of perceived exertion and leg aches and pain as well as    measurements of blood lactate accumulation and heart rate. Int. J. Sports Med. 8, 109-16.

Lortie, G., Simoneau, J. A., Hamel, P., Boulay, M. R., Landry, F. and Bouchard, C. (1984). Responses of maximal aerobic power and capacity to aerobic training. Int. J. Sports Med. 5, 232-6.

Loveless, D. J., Weber, C. L., Haseler, L. J. and Schneider, D. A. (2005). Maximal leg-strength training improves cycling economy in previously untrained men. Med. Sci. Sports Exerc. 37, 1231-6.

Lucia, A., Hoyos, J. and Chicharro, J. L. (2001). Preferred pedalling cadence in professional cycling. Med. Sci. Sports Exerc. 33, 1361-6.

Lucia, A., Hoyos, J., Perez, M. and Chicharro, J. L. (2000). Heart rate and performance parameters in elite cyclists: a longitudinal study. Med. Sci. Sports Exerc. 32, 1777-82.

Luhtanen, P., Rahkila, P., Rusko, H. and Viitasalo, J. T. (1987). Mechanical work and efficiency in ergometer bicycling at aerobic and anaerobic thresholds. Acta Physiol. Scand. 131, 331-7.

Luttrell, M. D. and Potteiger, J. A. (2003). Effects of short-term training using powercranks on cardiovascular fitness and cycling efficiency. Journal of Strength and Conditioning Research / National Strength & Conditioning Association 17, 785-91.

Marino, F. E., Kay, D., Cannon, J., Serwach, N. and Hilder, M. (2002). A reproducible and variable intensity cycling performance protocol for warm conditions. Journal of Science and Medicine in Sport / Sports Medicine Australia 5, 95-107.

Marsh, A. P. and Martin, P. E. (1998). Perceived exertion and the preferred cycling cadence. Med. Sci. Sports Exerc. 30, 942-8.

Marsh, A. P., Martin, P. E. and Foley, K. O. (2000). Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Med. Sci. Sports Exerc. 32, 1630-4.

Marsh, A. P., Martin, P. E. and Sanderson, D. J. (2000). Is a joint moment-based cost function associated with preferred cycling cadence? J. Biomech. 33, 173-80.

Marsh, D. and Sleivert, G. (1999). Effect of precooling on high intensity cycling performance. Br. J. Sports Med. 33, 393-7.

Martin, R., Hautier, C. and Bedu, M. (2002). Effect of age and pedalling rate on cycling efficiency and internal power in humans. European Journal of Applied Physiology 86, 245-50.

McDaniel, J., Durstine, J. L., Hand, G. A. and Martin, J. C. (2002). Determinants of metabolic cost during submaximal cycling. J. Appl. Physiol. 93, 823-8.

McGarvey, W., Jones, R. and Petersen, S. (2005). Excess post-exercise oxygen consumption following continuous and interval cycling exercise. International Journal of Sport Nutrition and Exercise Metabolism 15, 28-37.

McKay, G. A. and Banister, E. W. (1976). A comparison of maximum oxygen uptake determination by bicycle ergometry at various pedaling frequencies and by treadmill running at various speeds. Eur. J. Appl. Physiol. 35, 191-200.

McNaughton, L., Curtin, R., Goodman, G., Perry, D., Turner, B. and Showell, C. (1991). Anaerobic work and power output during cycle ergometer exercise: effects of bicarbonate loading. J. Sports Sci. 9, 151-60.

Medbo, J. I. and Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol. 67, 1881-6.

Miller, N. and Seireg, A. (1977). Effect of load, speed, and activity history on the EMG signals from the intact human muscle. Journal of Bioengineering 1, 147-55.

Millet, G. P., Tronche, C., Fuster, N. and Candau, R. (2002). Level ground and uphill cycling efficiency in seated and standing positions. Med. Sci. Sports Exerc. 34, 1645-52.

Minetti, A. E., Pinkerton, J. and Zamparo, P. (2001). From bipedalism to bicyclism: evolution in energetics and biomechanics of historic bicycles. Proc Biol Sci 268, 1351-60.

Mizuo, J., Nakatsu, T., Murakami, T., Kusachi, S., Tominaga, Y., Mashima, K., Uesugi, T., Ueda, H., Suezawa, C. and Tsuji, T. (2000). Exponential hyperbolic sine function fitting of heart rate response to constant load exercise. Japanese Journal of Physiology 50, 405-12.

Mognoni, P. and di Prampero, P. E. (2003). Gear, inertial work and road slopes as determinants of biomechanics in cycling. European Journal of Applied Physiology 90, 372-6.

Montfort-Steiger, V., Williams, C. A. and Armstrong, N. (2005). The reproducibility of an endurance performance test in adolescent cyclists. European Journal of Applied Physiology 94, 618-25.

Moriguchi, T., Tomoda, A., Ichimura, S., Odagiri, Y., Inoue, S., Nagasawa, T., Tanaka, H., Nakagawa, N. and Shimomitsu, T. (2004). Significance of post-exercise increment of urinary bicarbonate and pH in subjects loaded with submaximal cycling exercise. The Tohoku Journal of Experimental Medicine 202, 203-11.

Moseley, L., Achten, J., Martin, J. C. and Jeukendrup, A. E. (2004). No differences in cycling efficiency between world-class and recreational cyclists. Int. J. Sports Med. 25, 374-9.

Moseley, L. and Jeukendrup, A. E. (2001). The reliability of cycling efficiency. Med. Sci. Sports Exerc. 33, 621-7.

Mourot, L., Hintzy, F., Messonier, L., Zameziati, K. and Belli, A. (2004). Supra-maximal cycling efficiency assessed in humans by using a new protocol. European Journal of Applied Physiology 93, 325-32.

Moysi, J. S., Garcia-Romero, J. C., Alvero-Cruz, J. R., Vicente-Rodriguez, G., Ara, I., Dorado, C. and Calbet, J. A. L. (2005). Effects of eccentric exercise on cycling efficiency. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee 30, 259-75.

Nadeau, M., Brassard, A. and Cuerrier, J. P. (1983). The bicycle ergometer for muscle power testing. Canadian Journal of Applied Sport Sciences. Journal Canadien Des Sciences Appliquees Au Sport 8, 41-6.

Nakamura, Y., Mutoh, Y. and Miyashita, M. (1985). Determination of the peak power output during maximal brief pedalling bouts. J. Sports Sci. 3, 181-7.

Neary, J. P., Hall, K. and Bhambhani, Y. N. (2001). Vastus medialis muscle oxygenation trends during a simulated 20-km cycle time trial. European Journal of Applied Physiology 85, 427-33.

Neptune, R. R. and Hull, M. L. (1998). Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J. Biomech. Eng. 120, 334-41.

Neptune, R. R. and Hull, M. L. (1999). A theoretical analysis of preferred pedaling rate selection in endurance cycling. J. Biomech. 32, 409-15.

Neptune, R. R., Kautz, S. A. and Hull, M. L. (1997). The effect of pedaling rate on coordination in cycling. J. Biomech. 30, 1051-8.

Nesi, X., Bosquet, L. and Pelayo, P. (2005). Preferred pedal rate: an index of cycling performance. Int. J. Sports Med. 26, 372-5.

Neumayr, G., Pfister, R., Mitterbauer, G., Eibl, G. and Hoertnagl, H. (2005). Effect of competitive marathon cycling on plasma N-terminal pro-brain natriuretic peptide and cardiac troponin T in healthy recreational cyclists. The American Journal of Cardiology 96, 732-5.

Nevill, A. M., Jobson, S. A., Palmer, G. S. and Olds, T. S. (2005). Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach. European Journal of Applied Physiology 94, 705-10.

Nielens, H. and Lejeune, T. (2004). Bicycle shock absorption systems and energy expended by the cyclist. Sports Med 34, 71-80.

Origenes, M. M. t., Blank, S. E. and Schoene, R. B. (1993). Exercise ventilatory response to upright and aero-posture cycling. Med. Sci. Sports Exerc. 25, 608-12.

Pardal-Fernandez, J. M., Godes-Medrano, B. and Jerez-Garcia, P. (2005). Bilateral sacral radiculopathy in a cyclist. Electromyogr. Clin. Neurophysiol. 45, 155-60.

Parnes, E. I., Koshkina, E. V. and Krasnoselskii, M. I. (2003). [Parameters of heart rate variability during bicycle ergometry test]. Kardiologiia 43, 26-30.

Parnes, E. I., Koshkina, E. V., Krasnosel'skii, M. I. and Striuk, R. I. (2005). [What is the reason for low heart rhythm variability during bicycle exercise?]. Ter. Arkh. 77, 21-7.

Passfield, L. and Doust, J. H. (2000). Changes in cycling efficiency and performance after endurance exercise. Med. Sci. Sports Exerc. 32, 1935-41.

Patterson, R. P. and Moreno, M. I. (1990). Bicycle pedalling forces as a function of pedalling rate and power output. Med. Sci. Sports Exerc. 22, 512-6.

Peronnet, F., Bouissou, P., Perrault, H. and Ricci, J. (1989). A comparison of cyclists' time records according to altitude and materials used. Canadian Journal of Sport Sciences = Journal Canadien Des Sciences Du Sport 14, 93-8.

Petrofsky, J. S. (1979). Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer. Eur. J. Appl. Physiol. 41, 1-15.

Price, D. and Donne, B. (1997). Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man. J. Sports Sci. 15, 395-402.

Probst, M., Bulbulian, R. and Knapp, C. (1997). Hemodynamic responses to the stroop and cold pressor tests after submaximal cycling exercise in normotensive males. Physiology & Behavior 62, 1283-90.

Ratel, S., Bedu, M., Hennegrave, A., Dore, E. and Duche, P. (2002). Effects of age and recovery duration on peak power output during repeated cycling sprints. Int. J. Sports Med. 23, 397-402.

Redfield, R. and Hull, M. L. (1986). Prediction of pedal forces in bicycling using optimization methods. J. Biomech. 19, 523-40.

Redfield, R. and Hull, M. L. (1986). On the relation between joint moments and pedalling rates at constant power in bicycling. J. Biomech. 19, 317-29.

Reiser, M., Meyer, T., Kindermann, W. and Daugs, R. (2000). Transferability of workload measurements between three different types of ergometer. European Journal of Applied Physiology 82, 245-9.

Reiser, R. F. n., Peterson, M. L. and Broker, J. P. (2002). Influence of hip orientation on Wingate power output and cycling technique. Journal of Strength and Conditioning Research / National Strength & Conditioning Association 16, 556-60.

Rico-Sanz, J. and Mendez Marco, M. T. (2000). Creatine enhances oxygen uptake and performance during alternating intensity exercise. Med. Sci. Sports Exerc. 32, 379-85.

Rosler, K., Conley, K. E., Howald, H., Gerber, C. and Hoppeler, H. (1986). Specificity of leg power changes to velocities used in bicycle endurance training. J. Appl. Physiol. 61, 30-6.

Ryschon, T. W. and Stray-Gundersen, J. (1993). The effect of tyre pressure on the economy of cycling. Ergonomics 36, 661-6.

Sanderson, D. J. (1991). The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists. J. Sports Sci. 9, 191-203.

Sanderson, D. J. and Black, A. (2003). The effect of prolonged cycling on pedal forces. J. Sports Sci. 21, 191-9.

Sanderson, D. J., Hennig, E. M. and Black, A. H. (2000). The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and    recreational cyclists. J. Sports Sci. 18, 173-81.

Santalla, A., Manzano, J. M., Perez, M. and Lucia, A. (2002). A new pedaling design: the Rotor--effects on cycling performance. Med. Sci. Sports Exerc. 34, 1854-8.

Sarre, G., Lepers, R., Maffiuletti, N., Millet, G. and Martin, A. (2003). Influence of cycling cadence on neuromuscular activity of the knee extensors in humans. European Journal of Applied Physiology 88, 476-9.

Sarre, G., Lepers, R. and van Hoecke, J. (2005). Stability of pedalling mechanics during a prolonged cycling exercise performed at different cadences. J. Sports Sci. 23, 693-701.

Sartorio, A., Agosti, F., Marinone, P. G., Proietti, M. and Lafortuna, C. L. (2005). Growth hormone responses to repeated bouts of aerobic exercise with different recovery intervals in cyclists. J. Endocrinol. Invest. 28, RC11-4.

Saunders, M. J., Evans, E. M., Arngrimsson, S. A., Allison, J. D. and Cureton, K. J. (2003). Endurance training reduces end-exercise VO2 and muscle use during submaximal cycling. Med. Sci. Sports Exerc. 35, 257-62.

Schulz, H., Helle, S. and Heck, H. (1997). The validity of the telemetric system CORTEX X1 in the ventilatory and gas exchange measurement during exercise. Int. J. Sports Med. 18, 454-7.

Seabury, J. J., Adams, W. C. and Ramey, M. R. (1977). Influence of pedalling rate and power output on energy expenditure during bicycle ergometry. Ergonomics 20, 491-8.

Seifert, J. G., Bacharach, D. W. and Burke, E. R. (2003). The physiological effects of cycling on tandem and single bicycles. Br. J. Sports Med. 37, 50-3; discussion 53.

Sheel, A. W., Lama, I., Potvin, P., Coutts, K. D. and McKenzie, D. C. (1996). Comparison of aero-bars versus traditional cycling postures on physiological parameters during submaximal cycling. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee 21, 16-22.

Shennum, P. L. and deVries, H. A. (1976). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine and Science in Sports 8, 119-21.

Shibuya, K.-i. and Tanaka, J. (2003). Skeletal muscle oxygenation during incremental exercise. Arch. Physiol. Biochem. 111, 475-8.

Shin, K., Minamitani, H., Onishi, S., Yamazaki, H. and Lee, M. (1995). The power spectral analysis of heart rate variability in athletes during dynamic exercise--Part I. Clin. Cardiol. 18, 583-6.

Signorile, J. F., Kaplan, T. A., Applegate, B. and Perry, A. C. (1992). Effects of acute inhalation of the bronchodilator, albuterol, on power output. Med. Sci. Sports Exerc. 24, 638-42.

Smak, W., Neptune, R. R. and Hull, M. L. (1999). The influence of pedaling rate on bilateral asymmetry in cycling. J. Biomech. 32, 899-906.

Spierer, D. K., Goldsmith, R., Baran, D. A., Hryniewicz, K. and Katz, S. D. (2004). Effects of active vs. passive recovery on work performed during serial supramaximal exercise tests. Int. J. Sports Med. 25, 109-14.

Swain, D. P. (1994). The influence of body mass in endurance bicycling. Med. Sci. Sports Exerc. 26, 58-63.

Swain, D. P. and Wilcox, J. P. (1992). Effect of cadence on the economy of uphill cycling. Med. Sci. Sports Exerc. 24, 1123-7.

Swan, P. D., Spitler, D. L., Todd, M. K., Maupin, J. L., Lewis, C. L. and Darragh, P. M. (1989). Effects of posture on upper and lower limb peripheral resistance following submaximal cycling. Arch. Phys. Med. Rehabil. 70, 678-80.

Takahashi, M. (1999). [Studies on the effects of constant exercise around the ventilatory threshold using spectral analysis of EMG and ECG-RR    interval variability]. [Hokkaido Igaku zasshi] The Hokkaido Journal of Medical Science 74, 7-18.

Takahashi, T., Hayano, J., Okada, A., Saitoh, T. and Kamiya, A. (2005). Effects of the muscle pump and body posture on cardiovascular responses during recovery from cycle exercise. European Journal of Applied Physiology 94, 576-83.

Takaishi, T., Ishida, K., Katayama, K., Yamazaki, K., Yamamoto, T. and Moritani, T. (2002). Effect of cycling experience and pedal cadence on the near-infrared spectroscopy parameters. Med. Sci. Sports Exerc. 34, 2062-71.

Timmons, B. W., Hamadeh, M. J., Devries, M. C. and Tarnopolsky, M. A. (2005). Influence of gender, menstrual phase, and oral contraceptive use on immunological changes in response to prolonged cycling. J. Appl. Physiol. 99, 979-85.

Too, D. (1990). Biomechanics of cycling and factors affecting performance. Sports Med 10, 286-302.

Torii, M., Yamasaki, M. and Sasaki, T. (1987). [Skin surface temperatures during submaximal cycling observed by color thermography]. The Annals of Physiological Anthropology = Seiri Jinruigaku Kenkyukai Kaishi 6, 21-4.

Tossavainen, M., Nummela, A., Paavolainen, L., Mero, A. and Rusko, H. (1996). Comparison of two maximal anaerobic cycling tests. Int. J. Sports Med. 17 Suppl 2, S120-4.

Ushakov, B. B. and Chelnokova, E. V. (1992). [Maximal anaerobic capacity of man in a modified Wingate test]. Aviakosmicheskaia I Ekologicheskaia Meditsina = Aerospace and Environmental Medicine 26, 29-32.

Utkin, V. L. (1985). [Ergometric methods of examination]. Med. Tekh., 6-12.

Vallier, J.-M., Grego, F., Basset, F., Lepers, R., Bernard, T. and Brisswalter, J. (2005). Effect of fluid ingestion on neuromuscular function during prolonged cycling exercise. Br. J. Sports Med. 39, e17.

van Ingen Schenau, G. J., de Koning, J. J. and de Groot, G. (1992). The distribution of anaerobic energy in 1000 and 4000 metre cycling bouts. Int. J. Sports Med. 13, 447-51.

Van Schuylenbergh, R., Eynde, B. V. and Hespel, P. (2004). Prediction of sprint triathlon performance from laboratory tests. European Journal of Applied Physiology 91, 94-9.

Van Schuylenbergh, R., Van Leemputte, M. and Hespel, P. (2003). Effects of oral creatine-pyruvate supplementation in cycling performance. Int. J. Sports Med. 24, 144-50.

Van Schuylenbergh, R., Vanden Eynde, B. and Hespel, P. (2004). Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists. Int. J. Sports Med. 25, 403-8.

Vandebuerie, F., Vanden Eynde, B., Vandenberghe, K. and Hespel, P. (1998). Effect of creatine loading on endurance capacity and sprint power in cyclists. Int. J. Sports Med. 19, 490-5.

Vercruyssen, F., Brisswalter, J., Hausswirth, C., Bernard, T., Bernard, O. and Vallier, J.-M. (2002). Influence of cycling cadence on subsequent running performance in triathletes. Med. Sci. Sports Exerc. 34, 530-6.

Vercruyssen, F., Suriano, R., Bishop, D., Hausswirth, C. and Brisswalter, J. (2005). Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue. Br. J. Sports Med. 39, 267-72.

Verma, S. S., Gupta, J. S. and Malhotra, M. S. (1977). Prediction of maximal aerobic power in man. Eur. J. Appl. Physiol. 36, 215-22.

Villard, S., Casties, J.-F. and Mottet, D. (2005). Dynamic stability of locomotor respiratory coupling during cycling in humans. Neurosci. Lett. 383, 333-8.

Vogelaere, P., Quirion, A., Leclerq, R., Brasseur, M. and Bekaert, S. (1986). [Endurance bicycle ergometry at 0 degrees C: cardio-respiratory and metabolic course]. Canadian Journal of Applied Sport Sciences. Journal Canadien Des Sciences Appliquees Au Sport 11, 115-24.

Volkov, N. I., Karpova, Z. I., Mikeshina, N. G., Mokhova, E. N. and Savel'ev, I. A. (1986). [Interrelation between hematological and ergometric indices in performing critical-power exercises on the bicycle ergometer]. Fiziol. Cheloveka 12, 981-6.

Vollestad, N. K., Hallen, J. and Sejersted, O. M. (1994). Effect of exercise intensity on potassium balance in muscle and blood of man. The Journal of Physiology 475, 359-68.

Watt, J. B., Reiser, R. F. n., Peterson, M. L. and Walrath, D. E. (2002). Quantifying power output during cycling through measuring strain energy in a bicycle frame. Biomed. Sci. Instrum. 38, 417-21.

Wilber, R. L., Zawadzki, K. M., Kearney, J. T., Shannon, M. P. and Disalvo, D. (1997). Physiological profiles of elite off-road and road cyclists. Med. Sci. Sports Exerc. 29, 1090-4.

Williams, C. A., Ratel, S. and Armstrong, N. (2005). Achievement of peak VO2 during a 90-s maximal intensity cycle sprint in adolescents. Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee 30, 157-71.

Wilson, T. E., Johnson, S. C., Petajan, J. H., Davis, S. L., Gappmaier, E., Luetkemeier, M. J. and White, A. T. (2002). Thermal regulatory responses to submaximal cycling following lower-body cooling in humans. European Journal of Applied Physiology 88, 67-75.

Wolchok, J. C., Hull, M. L. and Howell, S. M. (1998). The effect of intersegmental knee moments on patellofemoral contact mechanics in cycling. J. Biomech. 31, 677-83.

Yoshihuku, Y. and Herzog, W. (1990). Optimal design parameters of the bicycle-rider system for maximal muscle power output. J. Biomech. 23, 1069-79.

Yoshihuku, Y. and Herzog, W. (1996). Maximal muscle power output in cycling: a modelling approach. J. Sports Sci. 14, 139-57.